Infiniium

8000A Programmer’s
Reference

~5i%- Agilent Technologies

Programmer's Reference

Publication Number D8064-97008
August 2008

This reference applies directly to software revision code A.05.50 and later.

© Copyright Agilent Technologies 2005-2008
All Rights Reserved.

8000A Series Infiniium
Oscilloscopes

In This Book

This book is your guide to programming the Infiniium Series Oscilloscopes.

Chapters 1-5 give you an introduction to programming the oscilloscopes, along
with necessary conceptual information. These chapters describe basic program
communications, interface, syntax, data types, and status reporting.

Chapter 6 shows example BASIC and C programs, and describes chunks of one
program to show you some typical applications. The BASIC and C example
programs are also shipped on a disk with the oscilloscope.

Chapters 7-25 describe the commands used to program the Infiniium
Oscilloscopes. Each chapter describes the set of commands that belong to an
individual subsystem, and explains the function of each command. These

chapters include:
ACQuire

BUS

CALibration
CHANnel
Common

DIGital

DISK

DISPlay

EXTernal Channel
FUNCtion
HARDcopy

HISTogram
MARKer
MEASure
POD

Root Level
SELFtest
SYSTem
TiMe Base
TRIGger
WAVeform
Waveform MEMory

Error Messages chapter describes error messages.

ii

Contents

1 Introduction to Programming
Communicating with the Oscilloscope 1-3
Output Command 1-4
Device Address 1-4
Instructions 1-4
Instruction Header 1-4
White Space (Separator) 1-5
Braces 1-5
Ellipsis 1-5
Square Brackets 1-5
Command and Query Sources 1-5
Program Data 1-6
Header Types 1-7
Duplicate Mnemonics 1-9
Query Headers 1-10
Program Header Options 1-11
Character Program Data 1-11
Numeric Program Data 1-12
Embedded Strings 1-13
Program Message Terminator 1-13
Common Commands within a Subsystem 1-14
Selecting Multiple Subsystems 1-14
Programming Getting Started 1-14
Initialization 1-15
Example Program using HP Basic 1-16
Using the DIGITIZE Command 1-17
Receiving Information from the Oscilloscope 1-19
String Variable Example 1-20
Numeric Variable Example 1-20
Definite-Length Block Response Data 1-21
Multiple Queries 1-22
Oscilloscope Status 1-22

2 LAN and GPIB Interfaces
LAN Interface Connector 2-3
GPIB Interface Connector 2-3
Default Startup Conditions 2-4
Interface Capabilities 2-5
GPIB Command and Data Concepts 2-6
Communicating Over the GPIB Interface 2-7
Communicating Over the LAN Interface 2-8
Communicating via Telnet and Sockets 2-10
Bus Commands 2-13

3 Message Communication and System Functions

Contents-1

Contents

Protocols 3-3

Status Reporting

Status Reporting Data Structures 4-5
Status Byte Register 4-8

Service Request Enable Register 4-10
Message Event Register 4-10

Trigger Event Register 4-10

Standard Event Status Register 4-11
Standard Event Status Enable Register 4-12
Operation Status Register 4-13
Operation Status Enable Register 4-14
Mask Test Event Register 4-15

Mask Test Event Enable Register 4-16
Trigger Armed Event Register 4-17
Acquisition Done Event Register 4-17
Error Queue 4-18

Output Queue 4-18

Message Queue 4-19

Clearing Registers and Queues 4-19

Remote Acquisition Synchronization
Introduction 5-2

Programming Flow 5-2

Setting Up the Oscilloscope 5-2

Acquiring a Waveform 5-3

Retrieving Results 5-3

Acquisition Synchronization 5-4

Single Shot Device Under Test (DUT) 5-5
Averaging Acquisition Synchronization 5-7

Programming Conventions

Truncation Rule 6-3

The Command Tree 6-4

Infinity Representation 6-15

Sequential and Overlapped Commands 6-15
Response Generation 6-15

EOI 6-15

Sample Programs

Sample Program Structure 7-3
Sample C Programs 7-4

Listings of the Sample Programs 7-18
gpibdecl.h Sample Header 7-19
srgagi.c Sample Program 7-21
learnstr.c Sample Program 7-23

Contents-2

10

11

sicl_IO.c Sample Program 7-27
natl_IO.c Sample Program 7-32
init.bas Sample Program 7-37
srg.bas Sample Program 7-45
Irn_str.bas Sample Program 7-51

Acquire Commands
AVERage 8-3
AVERage:COUNt 8-4
COMPlete 8-5
COMPlete:STATe 8-7
INTerpolate 8-8
MODE 8-9

POINts 8-11
POINts:AUTO 8-21
SEGMented:COUNt 8-22
SEGMented:INDex 8-23
SEGMented:TTAGs 8-24
SRATe (Sample RATe) 8-25
SRATe:AUTO 8-27

Bus Commands
B1.TYPE 9-3
BIT<M> 94
BITS 9-5

CLEar 9-6
CLOCk 9-7
CLOCk:SLOPe 9-8
DISPlay 9-9
LABel 9-10
READout 9-11

Calibration Commands
Oscilloscope Calibration 10-3
Probe Calibration 10-4

Calibration Commands 10-5

OUTPut 10-6
SKEW 10-7
STATus? 10-8

Channel Commands
BWLimit 11-3

DISPlay 11-4

INPut 11-5

OFFSet 11-6

Contents

Contents-3

12

13

14

Contents

PROBe 11-7
PROBe:ATTenuation 11-9
PROBe:EADapter 11-10
PROBe:ECoupling 11-12
PROBe:EXTernal 11-14
PROBe:EXTernal:GAIN 11-15
PROBe:EXTernal:OFFSet 11-17
PROBe:EXTernal:UNITs 11-19
PROBe:GAIN 11-21
PROBe:HEAD:ADD 11-22
PROBe:HEAD:DELete ALL 11-23
PROBe:HEAD:SELect 11-24
PROBe:ID? 11-25
PROBe:SKEW 11-27
PROBe:STYPe 11-28

RANGe 11-29

SCALe 11-30

UNITs 11-31

Common Commands

*CLS (Clear Status) 12-4

*ESE (Event Status Enable) 12-5
*ESR? (Event Status Register) 12-7
*IDN? (Identification Number) 12-9
*LRN? (Learn) 12-10

*OPC (Operation Complete) 12-12
*OPT? (Option) 12-13

*PSC (Power-on Status Clear) 12-14
*RCL (Recall) 12-15

*RST (Reset) 12-16

*SAV (Save) 12-17

*SRE (Service Request Enable) 12-18
*STB? (Status Byte) 12-20
*TRG (Trigger) 12-22
*TST? (Test) 12-23

*WAI (Wait) 12-24

Digital Commands
DISPlay 13-3
LABel 13-4

SIZE 13-b
THReshold 13-6

Disk Commands
CDIRectory 14-3
DELete 14-4

Contents-4

15

16

DIRectory? 14-5

LOAD 14-6

MDIRectory 14-7

MSTore (Obsolete) 14-8
PWD? 14-12

SAVe:IMAGe 14-13
SAVe:LISTing 14-14
SAVe:MEASurements 14-15
SAVe:SETup 14-16
SAVe:WAVeform 14-17
CSV, TSV and TXT Header Format
BIN Header Format 14-23
SEGMented 14-43

STORe (Obsolete) 14-44

Display Commands
CGRade 15-3
CGRade:LEVels? 15-5
COLumn 15-7
CONNect 15-8
DATA? 15-9

DCOLor 15-10
GRATicule 15-11
LABel 15-13

LINE 15-14
PERSistence 15-15
ROW 15-16

SCOLor 15-17
STRing 15-20

TEXT 15-21

External Trigger Commands
BWLimit 16-3

INPut 16-4

PROBe 16-5
PROBe:ATTenuation 16-6
PROBe:EADapter 16-7
PROBe:ECoupling 16-9
PROBe:EXTernal 16-11
PROBe:EXTernal:GAIN 16-12
PROBe:EXTernal:UNITs 16-14
PROBe:GAIN 16-16
PROBe:ID? 16-17
PROBe:SKEW 16-18

RANGe 16-19

UNITs 16-20

14-19

Contents

Contents-5

17

18

19

Contents

Function Commands
FUNCtion<N>? 17-4
ABSolute 17-5

ADD 17-6

AVERage 17-7
COMMonmode 17-8
DIFF (Differentiate) 17-9
DISPlay 17-10

DIVide 17-11
FFT:FREQuency 17-12
FFT:REFerence 17-13
FFT:RESolution? 17-14
FFT:WINDow 17-15
FFTMagnitude 17-17
FFTPhase 17-18
HIGHpass 17-19
HORizontal:POSition 17-20
HORizonta:RANGe 17-21
INTegrate 17-22

INVert 17-23

LOWPass 17-24
MAGNIify 17-25
MAXimum 17-26
MAXimum 17-27
MINimum 17-28
MULTiply 17-29
OFFSet 17-30

RANGe 17-31

SMOoth 17-32

SQRT 17-33

SQUare 17-34
SUBTract 17-35
VERSus 17-36
VERTical 17-37
VERTical:OFFSet 17-38
VERTical:RANGe 17-39

Hardcopy Commands
AREA 18-3

DPRinter 18-4
FACTors 18-6

IMAGe 18-7

PRINters? 18-8

Histogram Commands
AXIS 194

Contents-6

20

21

22

MODE 19-5
SCALe:SIZE 19-6
WINDow:DEFault 19-7
WINDow:SOURce 19-8

WINDow:X1Position | LLIMit 19-9

WINDow:X2Position | RLIMit 19-10
WINDow:Y1Position | BLIMit 19-11
WINDow:Y2Position | TLIMit 19-12

InfiniiScan (ISCan) Commands

DELay 20-3
MEASurement:FAIL 20-4
MEASurement:LLIMit 20-5
MEASurement 20-6
MEASurement: TEST 20-7
MEASurement:ULIMit 20-8
MODE 20-9
NONMonotonic:EDGE 20-10

NONMonotonic:HYSTeresis 20-11

NONMonotonic:SOURce 20-12
RUNT:HYSTeresis 20-13
RUNT:LLEVel 20-14
RUNT:SOURce 20-15
RUNT:ULEVel 20-16
SERial:PATTern 20-17
SERial:SOURce 20-18
ZONE<N>:MODE 20-19
ZONE<N>:PLACement 20-20
ZONE:SOURce 20-21
ZONE<N>:STATe 20-22

Limit Test Commands
FAIL 21-3

LLIMit 21-4
MEASurement 21-5
RESults? 21-6

TEST 21-7

ULIMit 21-8

Marker Commands
CURSor? 22-3
MEASurement:READout 22-4
MODE 22-5

TDELta? 22-6

TSTArt 22-7

TSTOp 22-9

Contents

Contents-7

23

Contents

VDELta? 22-11
VSTArt 22-12
VSTOp 22-14
X1Position 22-16
X2Position 22-17
X1Y1source 22-18
X2Y2source 22-19
XDELta? 22-20
Y1Position 22-21
Y2Position 22-22
YDELta? 22-23

Mask Test Commands
ALIGn 234

AlignFIT 23-5
AMASk:CREate 23-7
AMASKk:SOURce 23-8
AMASK:[SAVE | STORe] 23-9
AMASK:UNITs 23-10
AMASKk:XDELta 23-11
AMASKk:YDELta 23-13
AUTO 23-15

AVERage 23-16
AVERage:COUNt 23-17
COUNt:FAILures? 23-18
COUNt:FWAVeforms? 23-19
COUNt:WAVeforms? 23-20
DELete 23-21

ENABle 23-22

FOLDing 23-23
FOLDing:BITS 23-24
HAMPlitude 23-25
IMPedance 23-26
INVert 23-28
LAMPlitude 23-29
LOAD 23-30
NREGions? 23-31
PROBe:IMPedance? 23-32
RUMode 23-33
RUMode:SOFailure 23-35
SCALe:BIND 23-36
SCALe:X1 23-37
SCALe:XDELta 23-38
SCALe:Y1 23-40
SCALe:Y2 23-41

Contents-8

24

SOURce 23-42

STARt | STOP 23-43
STIMe 23-44

TITLe? 23-45
TRIGger:SOURce 23-46

Measure Commands
AREA 24-7

BWIDth 24-8

CDRRate 24-9
CGRade:CROSsing 24-10
CGRade:DCDistortion 24-11
CGRade:EHEight 24-12
CGRade:EWIDth 24-13
CGRade:JITTer 24-14
CGRade:QFACtor 24-15
CLEar 24-16

CLOCk 24-17
CLOCk:METHod 24-18
CLOCk::VERTical 24-20
CLOCKk::VERTical:OFFSet 24-21
CLOCKk:VERTical:RANGe 24-22
CTCDutycycle 24-23
CTCJitter 24-25
CTCNwidth 24-27
CTCPwidth 24-28
DATarate 24-29
DEFine 24-31
DELTatime 24-36
DUTYcycle 24-38
FALLtime 24-40
FFT:DFRequency 24-42
FFT:DMAGnitude 24-43
FFT:FREQuency 24-44
FFT:MAGNitude 24-45
FFT:PEAK1 24-46
FFT:PEAK2 24-47
FFT:THReshold 24-48
FREQuency 24-49
HISTogram:HITS 24-51
HISTogram:M1S 24-53
HISTogram:M2S 24-55
HISTogram:M3S 24-57
HISTogram:MAX? 24-59
HISTogram:MEAN? 24-60

Contents

Contents-9

Contents

HISTogram:MEDian? 24-61
HISTogram:MIN? 24-62
HISTogram:PEAK? 24-63
HISTogram:PP? 24-64
HISTogram:STDDev? 24-65
HOLDtime 24-66

JITTer:HISTogram 24-68
JITTer:-MEASurement 24-69
JITTer:SPECtrum 24-70
JITTer:SPECtrum:HORizontal 24-71
JITTer:SPECtrum:HORizontal:POSition 24-72
JITTer:SPECtrum:HORizontal: RANGe 24-73
JITTer:SPECtrum:VERTical 24-74
JITTer:SPECtrum:VERTical:OFFSet 24-75
JITTer:SPECtrum:VERTical:RANGe 24-76
JITTer:SPECtrum:WINDow 24-77
JITTer:STATistics 24-78
JITTer:TRENd 24-79
JITTer:TRENd:SMOoth 24-80
JITTer:TREND:SMOoth:POINts 24-81
JITTer:TRENd:VERTical 24-82
JITTer:TRENd:VERTical:OFFSet 24-83
JITTer:TRENd:VERTical:RANGe 24-84
NCJitter 24-85

NWIDth 24-87

OVERshoot 24-89

PERiod 24-91

PHASe 24-93

PREShoot 24-95

PWIDth 24-97
QUALifier<M>:CONDition 24-99
QUALifier<M>:SOURce 24-100
QUALifier<M>:STATe 24-101
RESults? 24-102

RISetime 24-105

SCRatch 24-107

SENDvalid 24-108

SETuptime 24-109

SLEWrate 24-111

SOURce 24-112

STATistics 24-113

TEDGe 24-114

TIEClock2 24-116

TIEData 24-118

TMAX 24-120

Contents-10

25

26

TMIN 24-121
TVOLt 24-122
UNITinterval 24-124
VAMPlitude 24-126
VAVerage 24-127
VBASe 24-129
VLOWer 24-130
VMAX 24-131
VMIDdle 24-132
VMIN 24-133
VPP 24-134
VRMS 24-135
VTIMe 24-137
VTOP 24-138
VUPPer 24-139

Pod Commands
DISPlay 25-3
THReshold 25-4
PSKew 25-5

Root Level Commands

ADER? (Acquisition Done Event Register) 26-4
AER? (Arm Event Register) 26-5

ATER? (Auto Trigger Event Register) 26-6

AUToscale 26-7
BLANk 26-8
CDISplay 26-9
DIGitize 26-10
DISable 26-12
ENABle 26-13
MTEE 26-14
MTER? 26-15
MODel? 26-16
OPEE 26-17
OPER? 26-18
OVLEnable 26-19
OVLRegister? 26-20
PRINt 26-21
RECall:SETup 26-22
RUN 26-23

SERial (Serial Number) 26-24

SINGle 26-25
STATus? 26-26
STOP 26-27
STORe:SETup 26-28

Contents

Contents-11

27

28

29

30

Contents

STORe:WAVeform 26-29
TER? (Trigger Event Register) 26-30
VIEW 26-31

Self-Test Commands
CANCel 27-3
SCOPETEST 27-4

System Commands
DATE 28-3

DEBug 28-4

DSP 28-6

ERRor? 28-7
HEADer 28-8

LOCK 28-10
LONGform 28-11
SETup 28-13

TIME 28-15

Time Base Commands
POSition 29-3

RANGe 29-4
REFerence 29-5
ROLL:ENABLE 29-6
SCALe 29-7

VIEW 29-8
WINDow:DELay 29-9
WINDow:POSition 29-11
WINDow:RANGe 29-12
WINDow:SCALe 29-13

Trigger Commands

Organization of Trigger Modes and Commands 30-5

Summary of Trigger Modes and Commands

Trigger Modes 30-8
HOLDoff 30-9
HTHReshold 30-10
HYSTeresis 30-11
LEVel 30-12
LTHReshold 30-13
SWEep 30-14

Edge Trigger Mode and Commands 30-15
EDGE:COUPling 30-17

30-6

Contents-12

EDGE:SLOPe 30-18
EDGE:SOURce 30-19

Glitch Trigger Mode and Commands 30-20

GLITch:POLarity 30-22
GLITch:SOURce 30-23
GLITch:WIDTh 30-24

Advanced COMM Trigger Mode and Commands 30-25

COMM:BWIDth 30-26
COMM:ENCode 30-27
COMM:LEVel 30-28
COMM:PATTern 30-29
COMM:POLarity 30-30
COMM:SOURce 30-31

Advanced Pattern Trigger Mode and Commands 30-32

PATTern:CONDition 30-34
PATTern:LOGic 30-35
:PATTern:THReshold:LEVel 30-36
:PATTern:THReshold:POD<N> 30-37

Advanced State Trigger Mode and Commands 30-38

STATe:CLOCk 30-40
STATe:LOGic 30-41
STATe:LTYPe 30-42
STATe:SLOPe 30-43
:STATe:THReshold:LEVel 30-44

Advanced Delay By Event Mode and Commands 30-45

EDLY:ARM:SOURce 30-47
EDLY:ARM:SLOPe 30-48
EDLY:EVENt:DELay 30-49
EDLY:EVENt:SOURce 30-50
EDLY:EVENt:SLOPe 30-51
EDLY:TRIGger:SOURce 30-52
EDLY:TRIGger:SLOPe 30-563

Advanced Delay By Time Mode and Commands 30-54

TDLY:ARM:SOURce 30-56
TDLY:ARM:SLOPe 30-57
TDLY:DELay 30-58
TDLY:TRIGger:SOURce 30-59
TDLY:TRIGger:SLOPe 30-60

Contents

Contents-13

Contents

Advanced Standard TV Mode and Commands 30-61

STV:FIELd 30-63
STV:LINE 30-64
STV:SOURce 30-65
STV:SPOLarity 30-66

Advanced User Defined TV Mode and Commands 30-67

UDTV:ENUMber 30-69
UDTV:PGTHan 30-70
UDTV:POLarity 30-71
UDTV:SOURce 30-72

Advanced Trigger Violation Modes 30-73
VIOLation:MODE 30-74

Pulse Width Violation Mode and Commands 30-75

VIOLation:PWIDth:DIRection 30-77
VIOLation:PWIDth:POLarity 30-78
VIOLation:PWIDth:SOURce 30-79
VIOLation:PWIDth:WIDTh 30-80

Setup Violation Mode and Commands 30-81

VIOLation:SETup:MODE 30-84
VIOLation:SETup:SETup:CSOurce 30-85
VIOLation:SETup:SETup:CSOurce:LEVel 30-86
VIOLation:SETup:SETup:CSOurce:EDGE 30-87
VIOLation:SETup:SETup:DSOurce 30-88
VIOLation:SETup:SETup:DSOurce:HTHReshold 30-89
VIOLation:SETup:SETup:DSOurce:LTHReshold 30-90
VIOLation:SETup:SETup:TIME 30-91
VIOLation:SETup:HOLD:CSOurce 30-92
VIOLation:SETup:HOLD:CSOurce:LEVel 30-93
VIOLation:SETup:HOLD:CSOurce:EDGE 30-94
VIOLation:SETup:HOLD:DSOurce 30-95
VIOLation:SETup:HOLD:DSOurce:HTHReshold 30-96
VIOLation:SETup:HOLD:DSOurce:LTHReshold 30-97
VIOLation:SETup:HOLD:TIME 30-98
VIOLation:SETup:SHOLd:CSOurce 30-99
VIOLation:SETup:SHOLd:CSOurce:LEVel 30-100
VIOLation:SETup:SHOLd:CSOurce:EDGE 30-101
VIOLation:SETup:SHOLd:DSOurce 30-102
VIOLation:SETup:SHOLd:DSOurce:HTHReshold 30-103
VIOLation:SETup:SHOLd:DSOurce:LTHReshold 30-104
VIOLation:SETup:SHOLd:SetupTIMe (STIMe) 30-105

Contents-14

31

32

VIOLation:SETup:SHOLd:HoldTIMe (HTIMe) 30-106

Transition Violation Mode 30-107

VIOLation:TRANsition 30-109
VIOLation:TRANsition:SOURce 30-110
VIOLation:TRANsition:SOURce:HTHReshold 30-111
VIOLation:TRANsition:SOURce:LTHReshold 30-112
VIOLation:TRANsition:TYPE 30-113

Waveform Commands
BANDpass? 31-b
BYTeorder 31-6
COMPlete? 31-7

COUNt? 31-8

COUPling? 31-9

DATA? 31-10

DATA? Example for Analog Channels 31-12
DATA? Example for Digital Channels 31-26
FORMat 31-41

POINts? 31-44

PREamble 31-45
SEGMented:COUNt? 31-51
SEGMented:TTAG? 31-52
SOURce 31-563

TYPE? 31-55

VIEW 31-57

XDISplay? 31-59
XINCrement? 31-60
XORigin? 31-61

XRANge? 31-62
XREFerence? 31-63
XUNits? 31-64

YDISplay? 31-65
YINCrement? 31-66
YORigin? 31-67

YRANge? 31-68
YREFerence? 31-69
YUNits? 31-70

Waveform Memory Commands
DISPlay 32-3

LOAD 32-4

SAVE 32-5

XOFFset 32-6

XRANge 32-7

Contents

Contents-15

33

YOFFset 32-8
YRANge 32-9

Error Messages

Error Queue 33-3

Error Numbers 33-4

Command Error 33-5

Execution Error 33-6

Device- or Oscilloscope-Specific Error
Query Error 33-8

List of Error Messages 33-9

33-7

Contents-16

Introduction to Programming

Introduction to Programming

This chapter introduces the basics for remote programming of an
oscilloscope. The programming commands in this manual conform to
the IEEE 488.2 Standard Digital Interface for Programmable
Instrumentation. The programming commands provide the means of
remote control.

Basic operations that you can do with a computer and an oscilloscope
include:

e Set up the oscilloscope.

e Make measurements.

¢ Get data (waveform, measurements, and configuration) from the
oscilloscope.

¢ Send information, such as waveforms and configurations, to the
oscilloscope.

You can accomplish other tasks by combining these functions.

Example Programs are Written in HP BASIC and C

The programming examples for individual commands in this manual are written in
HP BASIC and C.

1-2

Introduction to Programming
Communicating with the Oscilloscope

Communicating with the Oscilloscope

Computers communicate with the oscilloscope by sending and receiving
messages over a remote interface, such as a GPIB card or a Local Area Network
(LAN) card. Commands for programming normally appear as ASCII character
strings embedded inside the output statements of a “host” language available
on your computer. The input commands of the host language are used to read
responses from the oscilloscope.

For example, HP BASIC uses the OUTPUT statement for sending commands
and queries. After a query is sent, the response is usually read using the

HP BASIC ENTER statement. The ENTER statement passes the value across
the bus to the computer and places it in the designated variable.

For the GPIB interface, messages are placed on the bus using an output
command and passing the device address, program message, and a terminator.
Passing the device address ensures that the program message is sent to the
correct GPIB interface and GPIB device.

The following HP BASIC OUTPUT statement sends a command that sets the
channel 1 scale value to 500 mV:

OUTPUT <device address> ;" :CHANNEL1:SCALE 500E-
3"<terminator>

The device address represents the address of the device being programmed.
Each of the other parts of the above statement are explained on the following

pages.

Use the Suffix Multiplier Instead

Using "mV" or "V" following the numeric voltage value in some commands will
cause Error 138 - Suffix not allowed. Instead, use the convention for the suffix
multiplier as described in chapter 3, "Message Communication and System
Functions."

1-3

Introduction to Programming
Output Command

Output Command

The output command depends entirely on the programming language.
Throughout this book, HP BASIC and ANSI C are used in the examples of
individual commands. If you are using other languages, you will need to find
the equivalents of HP BASIC commands like OUTPUT, ENTER, and CLEAR, to
convert the examples.

Device Address

The location where the device address must be specified depends on the
programming language you are using. In some languages, it may be specified
outside the OUTPUT command. In HP BASIC, it is always specified after the
keyword, OUTPUT. The examples in this manual assume that the oscilloscope
and interface card are at GPIB device address 707. When writing programs, the
device address varies according to how the bus is configured.

Instructions

Instructions, both commands and queries, normally appear as strings embedded
in a statement of your host language, such as BASIC, Pascal, or C. The only
time a parameter is not meant to be expressed as a string is when the
instruction's syntax definition specifies <block data>, such as HP BASIC’s
"learnstring" command. There are only a few instructions that use block data.

Instructions are composed of two main parts:
e The header, which specifies the command or query to be sent.

® The program data, which provides additional information to clarify the
meaning of the instruction.

Instruction Header

The instruction header is one or more command mnemonics separated by
colons (:). They represent the operation to be performed by the oscilloscope.
See the “Programming Conventions” chapter for more information.

Queries are formed by adding a question mark (?) to the end of the header.
Many instructions can be used as either commands or queries, depending on
whether or not you include the question mark. The command and query forms
of an instruction usually have different program data. Many queries do not use
any program data.

1-4

Introduction to Programming
White Space (Separator)

White Space (Separator)

White space is used to separate the instruction header from the program data.
If the instruction does not require any program data parameters, you do not
need to include any white space. In this manual, white space is defined as one
or more spaces. ASCII defines a space to be character 32 in decimal.

Braces

When several items are enclosed by braces, { }, only one of these elements may
be selected. Vertical line (|) indicates "or". For example, {ON | OFF} indicates
that only ON or OFF may be selected, not both.

Ellipsis

... An ellipsis (trailing dots) indicates that the preceding element may be
repeated one or more times.

Square Brackets

Items enclosed in square brackets, [], are optional.

Command and Query Sources

Many commands and queries require that a source be specified. Depending on
the command or query and the model number of Infiniium oscilloscope being
used, some of the sources are not available. The following is a list of sources:
CHANnel1 FUNCtion1 WMEMory1
CHANnel2 FUNCtion2 WMEMory2
CHANnel3 FUNCtion3 WMEMory3
CHANnel4 FUNCtiond WMEMory4

DIGital0 DIGital1 DIGital2 DIGital3
DIGital4 DIGital5 DIGital6 DIGital?7
DIGital8 DIGital9 DIGital10 DIGital11
DIGital12 DIGital13 DIGital14 DIGital15
CLOCk MTRend MSPectrum HISTogram

1-5

Introduction to Programming
Program Data

Program Data

Program data is used to clarify the meaning of the command or query. It
provides necessary information, such as whether a function should be on or off,
or which waveform is to be displayed. Each instruction's syntax definition
shows the program data and the values they accept.

When there is more than one data parameter, they are separated by commas ().
You can add spaces around the commas to improve readability.

1-6

Introduction to Programming
Header Types

Header Types

There are three types of headers:
¢ Simple Command headers

e Compound Command headers
e Common Command headers

Simple Command Header

Simple command headers contain a single mnemonic. AUTOSCALE and
DIGITIZE are examples of simple command headers typically used in this
oscilloscope. The syntax is:

<program mnemonic><terminator>
or
OUTPUT 707; " :AUTOSCALE”

When program data must be included with the simple command header
(for example, :DIGITIZE CHAN1), white space is added to separate the data
from the header. The syntax is:

<program mnemonic><separator><program data><terminator>
or
OUTPUT 707;”:DIGITIZE CHANNEL1, FUNCTION2”

Compound Command Header

Compound command headers are a combination of two program mnemonics.
The first mnemonic selects the subsystem, and the second mnemonic selects
the function within that subsystem. The mnemonics within the compound
message are separated by colons. For example:

To execute a single function within a subsystem:
:<subsystem>:<function><separator><program data><terminator>

For example:

OUTPUT 707;” :CHANNELL : BWLIMIT ON”

1-7

Introduction to Programming
Header Types

Combining Commands in the Same Subsystem

To execute more than one command within the same subsystem, use a semi-
colon (;) to separate the commands:

:<subsystem>: <command><separator><data>; <command><separator>
<data><terminator>

For example:

:CHANNELL : INPUT DC; BWLIMIT ON

Common Command Header

Common command headers, such as clear status, control the IEEE 488.2
functions within the oscilloscope. The syntax is:

*<command header><terminator>

No space or separator is allowed between the asterisk (*) and the command
header. *CLS is an example of a common command header.

1-8

Introduction to Programming
Duplicate Mnemonics

Duplicate Mnemonics

Identical function mnemonics can be used for more than one subsystem. For
example, you can use the function mnemonic RANGE to change both the
vertical range and horizontal range:

To set the vertical range of channel 1 to 0.4 volts full scale:
:CHANNEL1 : RANGE .4

To set the horizontal time base to 1 second full scale:
:TIMEBASE:RANGE 1

In these examples, CHANNEL1 and TIMEBASE are subsystem selectors, and
determine the range type being modified.

1-9

Introduction to Programming
Query Headers

Query Headers

A command header immediately followed by a question mark (?) is a query.
After receiving a query, the oscilloscope interrogates the requested subsystem
and places the answer in its output queue. The answer remains in the output
queue untilitisread or until another command isissued. Whenread, the answer
is transmitted across the bus to the designated listener (typically a computer).
For example, the query:

: TIMEBASE : RANGE?

places the current time base setting in the output queue.

In HP BASIC, the computer input statement:

ENTER < device address > ;Range

passes the value across the bus to the computer and places it in the variable
Range.

You can use queries to find out how the oscilloscope is currently configured and
to get results of measurements made by the oscilloscope.

For example, the command:

:MEASURE:RISETIME?

tells the oscilloscope to measure the rise time of your waveform and place the
result in the output queue.

The output queue must be read before the next program message is sent. For
example, when you send the query :MEASURE:RISETIME?, you must follow it
with an input statement. In HP BASIC, this is usually done with an ENTER
statement immediately followed by a variable name. This statement reads the
result of the query and places the result in a specified variable.

Handle Queries Properly

If you send another command or query before reading the result of a query, the
output buffer is cleared and the current response is lost. This also generates a
query-interrupted error in the error queue. If you execute an input statement before
you send a query, it will cause the computer to wait indefinitely.

Introduction to Programming
Program Header Options

Program Header Options

You can send program headers using any combination of uppercase or lowercase
ASCII characters. Oscilloscope responses, however, are always returned in
uppercase.

You may send program command and query headers in either long form
(complete spelling), short form (abbreviated spelling), or any combination of
long form and short form. For example:

‘TIMEBASE:DELAY 1E-6 is the long form.

‘TIM:DEL 1E-6 is the short form.

Using Long Form or Short Form

Programs written in long form are easily read and are almost self-documenting.
The short form syntax conserves the amount of computer memory needed for
program storage and reduces /0 activity.

The rules for the short form syntax are described in the chapter, “Programming
Conventions.”

Character Program Data

Character program data is used to convey parameter information as alpha or
alphanumeric strings. For example, the :TIMEBASE:REFERENCE command
can be set to left, center, or right. The character program data in this case may
be LEFT, CENTER, or RIGHT. The command :TIMEBASE:REFERENCE
RIGHT sets the time base reference to right.

The available mnemonics for character program data are always included with
the instruction's syntax definition. You may send either the long form of
commands, or the short form (if one exists). You may mix uppercase and
lowercase letters freely. When receiving responses, uppercase letters are used
exclusively.

1-11

Introduction to Programming
Numeric Program Data

Numeric Program Data

Some command headers require program data to be expressed numerically.
For example, :TIMEBASE:RANGE requires the desired full-scale range to be
expressed numerically.

For numeric program data, you can use exponential notation or suffix
multipliers to indicate the numeric value. The following numbers are all equal:

28 = 0.28E2 = 280E-1 = 28000m = 0.028K = 28E-3K

When a syntax definition specifies that a number is an integer, it means that the
number should be whole. Any fractional part isignored and truncated. Numeric
data parameters that accept fractional values are called real numbers. For more
information see the chapter, “Interface Functions.”

All numbers are expected to be strings of ASCII characters.

e When sending the number 9, you would send a byte representing the
ASCII code for the character “9” (which is 57).

¢ A three-digit number like 102 would take up three bytes (ASCII codes 49,
48, and 50). The number of bytes is figured automatically when you
include the entire instruction in a string.

Introduction to Programming
Embedded Strings

Embedded Strings

Embedded strings contain groups of alphanumeric characters which are treated
as a unit of data by the oscilloscope. An example of thisis the line of text written
to the advisory line of the oscilloscope with the :SYSTEM:DSP command:
:SYSTEM:DSP ""This is a message.""

You may delimit embedded strings with either single (") or double (") quotation
marks. These strings are case-sensitive, and spaces are also legal characters.

Program Message Terminator

The program instructions within a data message are executed after the program
message terminator is received. The terminator may be either an NL (New
Line) character, an EOI (End-Or-Identify) asserted in the GPIB interface, or a
combination of the two. Asserting the EOI sets the EOI control line low on the
last byte of the data message. The NL character is an ASCII linefeed (decimal
10).

New Line Terminator Functions Like EQS and EOT

The NL (New Line) terminator has the same function as an EOS (End Of String) and
EOT (End Of Text) terminator.

1-13

Introduction to Programming
Common Commands within a Subsystem

Common Commands within a Subsystem

Common commands can be received and processed by the oscilloscope whether
they are sent over the bus as separate program messages or within other
program messages. If you have selected a subsystem, and a common command
is received by the oscilloscope, the oscilloscope remains in the selected
subsystem. For example, if the program message

" : ACQUIRE:AVERAGE ON; *CLS; COUNT 1024"

is received by the oscilloscope, the oscilloscope turns averaging on, then clears
the status information without leaving the selected subsystem.

If some other type of command is received within a program message, you must
re-enter the original subsystem after the command. For example, the program
message

" : ACQUIRE:AVERAGE ON; : AUTOSCALE; : ACQUIRE:AVERAGE: COUNT 1024"

turns averaging on, completes the autoscale operation, then sets the acquire
average count. Here, :ACQUIRE must be sent again after AUTOSCALE to re-
enter the ACQUIRE subsystem and set the count.

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems on the same line by separating each command with a semicolon.
The colon following the semicolon lets you enter anew subsystem. For example:
<program mnemonic><data>; :<program mnemonic><data><terminator>

:CHANNELI1:RANGE 0.4;:;TIMEBASE:RANGE 1

You can Combine Compound and Simple Commands

Multiple program commands may be any combination of compound and simple
commands.

Programming Getting Started

The remainder of this chapter explains how to set up the oscilloscope, how to
retrieve setup information and measurement results, how to digitize a
waveform, and how to pass data to the computer. The chapter, “Measure
Commands” describes sending measurement data to the oscilloscope.

Introduction to Programming
Initialization

Initialization

To make sure the bus and all appropriate interfaces are in a known state, begin
every program with an initialization statement. For example, HP BASIC
provides a CLEAR command which clears the interface buffer:

CLEAR 707 ! initializes the interface of the oscilloscope

When you are using GPIB, CLEAR also resets the oscilloscope's parser. The
parser is the program that reads in the instructions you send.

After clearing the interface, initialize the oscilloscope to a preset state:

OUTPUT 707;"*RST" ! initializes the oscilloscope to a preset
state

Initializing the Oscilloscope

The commands and syntax for initializing the oscilloscope are discussed in the
chapter, “Common Commands.” Refer to your GPIB manual and programming
language reference manual for information on initializing the interface.

Autoscale

The AUTOSCALE feature of Agilent Technologies digitizing oscilloscopes
performs a very useful function on unknown waveforms by automatically setting
up the vertical channel, time base, and trigger level of the oscilloscope.

The syntax for the autoscale function is:

:AUTOSCALE<terminator>

Setting Up the Oscilloscope

A typical oscilloscope setup configures the vertical range and offset voltage, the
horizontal range, delay time, delay reference, trigger mode, trigger level, and
slope.

A typical example of the commands sent to the oscilloscope are:

:CHANNEL1: PROBE 10; RANGE 16;O0FFSET 1.00<terminator>
:SYSTEM: HEADER OFF<terminator>
: TIMEBASE:RANGE 1E-3;DELAY 100E-6<terminator>

This example sets the time base at 1 ms full-scale (100 ps/div), with delay of
100 ps. Vertical is set to 16 V full-scale (2 V/div), with center of screen at 1 V,
and probe attenuation of 10.

1-15

Introduction to Programming
Example Program using HP Basic

10
20
30
40
50
60
70
80
90
100
110
120
125
130
140
150

CLEAR 707!

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
END

707 ;
707;
707 ;
707;
707 ;
707;
707 ;
707;
707 ;
707;
707 ;
707;
707 ;
707;

Example Program using HP Basic

This program demonstrates the basic command structure used to program the
oscilloscope.

Initialize oscilloscope interface

*RST"!Initialize oscilloscope to preset state
:TIMEBASE:RANGE 5E-4"! Time base to 500 us full scale
:TIMEBASE:DELAY 0"! Delay to zero

: TIMEBASE:REFERENCE CENTER"! Display reference at center
:CHANNEL1:PROBE 10"! Probe attenuation to 10:1
:CHANNEL1:RANGE 1.6"! Vertical range to 1.6 V full scale
:CHANNEL1 :OFFSET -.4"! Offset to -0.4

:CHANNELL : INPUT DC"! Coupling to DC

:TRIGGER:MODE EDGE"! Edge triggering

:TRIGGER:LEVEL CHAN1,-.4"! Trigger level to -0.4
:TRIGGER:SLOPE POSITIVE"! Trigger on positive slope
:SYSTEM:HEADER OFF<terminator>

:ACQUIRE:MODE RTIME"! Normal acquisition
:DISPLAY:GRATICULE FRAME"! Grid off

Overview of the Program
e Line 10 initializes the oscilloscope interface to a known state.
e Line 20 initializes the oscilloscope to a preset state.

¢ Lines 30 through 50 set the time base, the horizontal time at 500 us full scale,
and O s of delay referenced at the center of the graticule.

e Lines 60 through 90 set 10:1 probe attenuation, set the vertical range to
1.6 volts full scale, center screen at —0.4 volts, and select DC 1 Mohm
impedance coupling.

e Lines 100 through 120 configure the oscilloscope to trigger at —0.4 volts with
positive edge triggering.

e Line 125 turns system headers off.

e Line 130 configures the oscilloscope for real time acquisition.

e Line 140 turns the grid off.

Introduction to Programming
Using the DIGITIZE Command

Using the DIGITIZE Command

The DIGITIZE command is a macro that captures data using the acquisition
(ACQUIRE) subsystem. When the digitize process is complete, the acquisition
is stopped. You can measure the captured data by using the oscilloscope or by
transferring the data to a computer for further analysis. The captured data
consists of two parts: the preamble and the waveform data record.

After changing the oscilloscope configuration, the waveform buffers are cleared.
Before doing a measurement, you should send the DIGITIZE command to
ensure new data has been collected.

You can send the DIGITIZE command with no parameters for a higher
throughput. Refer to the DIGITIZE command in the chapter, “Root Level
Commands” for details.

When the DIGITIZE command is sent to an oscilloscope, the specified channel’s
waveform is digitized using the current ACQUIRE parameters. Before sending
the :WAVEFORM:DATA? query to download waveform data to your computer,
you should specify the WAVEFORM parameters.

The number of data points comprising a waveform varies according to the
number requested in the ACQUIRE subsystem. The ACQUIRE subsystem
determines the number of data points, type of acquisition, and number of
averages used by the DIGITIZE command. This lets you specify exactly what
the digitized information contains. The following program example shows a
typical setup:

OUTPUT 707;":SYSTEM:HEADER OFF<terminator>

OUTPUT 707; " :ACQUIRE:MODE RTIME"<terminator>

OUTPUT 707;":ACQUIRE:COMPLETE 100"<terminator>

OUTPUT 707; " :WAVEFORM: SOURCE CHANNEL1"<terminator>

OUTPUT 707; " :WAVEFORM: FORMAT BYTE"<terminator>

OUTPUT 707; " :ACQUIRE:COUNT 8"<terminator>

OUTPUT 707;":ACQUIRE:POINTS 500"<terminator>

OUTPUT 707;":DIGITIZE CHANNELl"<terminator>

OUTPUT 707; " :WAVEFORM:DATA?"<terminator>

This setup places the oscilloscope into the real time sampling mode using eight
averages. This means that when the DIGITIZE command is received, the
command will execute until the waveform has been averaged at least eight
times.

After receiving the :WAVEFORM:DATA? query, the oscilloscope will start
downloading the waveform information.

Digitized waveforms are passed from the oscilloscope to the computer by
sending a numerical representation of each digitized point. The format of the
numerical representation is controlled by using the :WAVEFORM:FORMAT
command and may be selected as BYTE, WORD, or ASCII.

1-17

Introduction to Programming
Using the DIGITIZE Command

The easiest method of receiving a digitized waveform depends on data
structures, available formatting, and I/O capabilities. Youmust convert the data
values to determine the voltage value of each point. These data values are
passed starting with the left most point on the oscilloscope's display. For more
information, refer to the chapter, “Waveform Commands.”

When using GPIB, you may abort a digitize operation by sending a Device Clear
over the bus (for example, CLEAR 707).

Introduction to Programming
Receiving Information from the Oscilloscope

Receiving Information from the Oscilloscope

After receiving a query (a command header followed by a question mark), the
oscilloscope places the answer in its output queue. The answer remains in the
output queue until it is read or until another command is issued. When read,
the answer is transmitted across the interface to the computer. The input
statement for receiving a response message from an oscilloscope's output queue
typically has two parameters; the device address and a format specification for
handling the response message. For example, to read the result of the query
command :CHANNELI:INPUT? you would execute the HP BASIC statement:

ENTER <device address> ;Setting$

This would enter the current setting for the channel 1 coupling in the string
variable Setting$. The device address parameter represents the address of the
oscilloscope.

All results for queries sent in a program message must be read before another
program message is sent. For example, when you send the query
:MEASURE:RISETIME?, you must follow that query with an input statement.
In HP BASIC, this is usually done with an ENTER statement.

Handle Queries Properly

If you send another command or query before reading the result of a query, the
output buffer will be cleared and the current response will be lost. This will also
generate a query-interrupted error in the error queue. If you execute an input
statement before you send a query, it will cause the computer to wait indefinitely.

The format specification for handling response messages depends on both the
computer and the programming language.

1-19

Introduction to Programming
String Variable Example

String Variable Example

The output of the oscilloscope may be numeric or character data depending on
what is queried. Refer to the specific commands for the formats and types of
data returned from queries.

For the example programs, assume that the device being programmed is at
device address 707. The actual address depends on how you have configured
the bus for your own application.

In HP BASIC 5.0, string variables are case-sensitive, and must be expressed
exactly the same each time they are used. This example shows the data being
returned to a string variable:

10 DIM Rang$[30]

20 OUTPUT 707; " :CHANNELI : RANGE?"

30 ENTER 707;Rang$

40 PRINT Rang$

50 END

After running this program, the computer displays:
+8.00000E-01

Numeric Variable Example

This example shows the data being returned to a numeric variable:

10 OUTPUT 707;" :CHANNELL :RANGE?"
20 ENTER 707;Rang

30 PRINT Rang

40 END

After running this program, the computer displays:
.8

1-20

Introduction to Programming
Definite-Length Block Response Data

Definite-Length Block Response Data

Definite-length block response data allows any type of device-dependent data
to be transmitted over the system interface as a series of 8-bit binary data bytes.
This is particularly useful for sending large quantities of data or 8-bit extended
ASCII codes. The syntax is a pound sign (#) followed by a non-zero digit
representing the number of digits in the decimal integer. After the non-zero
digit is the decimal integer that states the number of 8-bit data bytes being sent.
This is followed by the actual data.

For example, for transmitting 4000 bytes of data, the syntax would be:
#44000 <4000 bytes of data> <terminator>

The lifetimes “4” represents the number of digits in the number of bytes, and
“4000” represents the number of bytes to be transmitted.

1-21

Introduction to Programming
Multiple Queries

Multiple Queries

You can send multiple queries to the oscilloscope within a single program
message, but you must also read them back within a single program message.
This can be accomplished by either reading them back into a string variable or
into multiple numeric variables. For example, you could read the result of the
query :TIMEBASE:RANGE?;DELAY? into the string variable Results$ with the
command:

ENTER 707;Results$

When youread the result of multiple queries into string variables, each response
is separated by a semicolon. For example, the response of the query
"TIMEBASE:RANGE?;DELAY? would be:

<range_value>;<delay_value>

Use the following program message to read the query
‘TIMEBASE:RANGE?;DELAY? into multiple numeric variables:

ENTER 707;Resultl,Result2

Oscilloscope Status

Status registers track the current status of the oscilloscope. By checking the
oscilloscope status, you can find out whether an operation has completed and
is receiving triggers. The chapter, “Status Reporting” explains how to check
the status of the oscilloscope.

1-22

LAN and GPIB Interfaces

LAN and GPIB Interfaces

There are several types of interfaces that can be used to remotely
program the Infiniium oscilloscope: Local Area Network (LAN) interface
and GPIB interface. Telnet and sockets can also be used to connect to
the oscilloscope.

2-2

LAN and GPIB Interfaces
LAN Interface Connector

LAN Interface Connector

The oscilloscope is equiped with a LAN interface RJ-45 connector on the rear
panel. This allows direct connect to your network. However, before you can
use the LAN interface to program the oscilloscope, the network properties must
be configured. Unless you are a Network Administrator, you should contact
your Network Administrator to add the appropriate client, protocols, and
configuration information for your LAN. This information is different for every
company.

CAUTION

GPIB Interface Connector

The oscilloscope is equipped with a GPIB interface connector on the rear panel.
This allows direct connection to a GPIB equipped computer. You can connect
an external GPIB compatible device to the oscilloscope by installing a GPIB
cable between the two units. Finger tighten the captive screws on both ends
of the GPIB cable to avoid accidentally disconnecting the cable during
operation.

A maximum of fifteen GPIB compatible instruments (including a computer) can
be interconnected in a system by stacking connectors. This allows the
oscilloscopes to be connected in virtually any configuration, as long as there is
a path from the computer to every device operating on the bus.

Avoid stacking more than three or four cables on any one connector. Multiple
connectors produce leverage that can damage a connector mounting.

2-3

LAN and GPIB Interfaces
Default Startup Conditions

Default Startup Conditions

The following default conditions are established during power-up:

The Request Service (RQS) bit in the status byte register is set to zero.
All of the event registers are cleared.

The Standard Event Status Enable Register is set to OxFF hex.

Service Request Enable Register is set to 0x80 hex.

The Operation Status Enable Register is set to OXFFFF hex.

The Overload Event Enable Register is set to 0xFF hex.

The Mask Test Event Enable Register is set to OxFF hex.

You can change the default conditions using the *PSC command with a
parameter of 1 (one). When set to 1, the Standard Event Status Enable Register
is set 0x00 hex and the Service Request Enable Register is set to 0x00 hex. This
prevents the Power On (PON) event from setting the SRQ interrupt when the
oscilloscope is ready to receive commands.

2-4

LAN and GPIB Interfaces
Interface Capabilities

Table 2-1

Interface Capabilities

The interface capabilities of this oscilloscope, as defined by IEEE 488.1 and
IEEE 488.2, are listed in Table 2-1.

Interface Capabilities

Code Interface Function Capability

SH1 Source Handshake Full Capability

AH1 Acceptor Handshake Full Capability

T5 Talker Basic Talker/Serial Poll/Talk Only Mode/
Unaddress if Listen Address (MLA)

L4 Listener Basic Listener/
Unaddresses if Talk Address (MTA)

SR1 Service Request Full Capability

RL1 Remote Local Complete Capability

PPO Parallel Poll No Capability

DC1 Device Clear Full Capability

DT1 Device Trigger Full Capability

co Computer No Capability

E2 Driver Electronics Tri State (1 MB/SEC MAX)

2-5

LAN and GPIB Interfaces
GPIB Command and Data Concepts

GPIB Command and Data Concepts

The GPIB interface has two modes of operation: command mode and datamode.
The interface is in the command mode when the Attention (ATN) control line
istrue. The command modeis used to send talk and listen addresses and various
interface commands such as group execute trigger (GET).

The interface is in the data mode when the ATN line is false. The data mode is
used to convey device-dependent messages across the bus. The
device-dependent messages include all of the oscilloscope-specific commands,
queries, and responses found in this manual, including oscilloscope status
information.

2-6

LAN and GPIB Interfaces
Communicating Over the GPIB Interface

Communicating Over the GPIB Interface

Device addresses are sent by the computer in the command mode to specify
who talks and who listens. Because GPIB can address multiple devices through
the same interface card, the device address passed with the program message
must include the correct interface select code and the correct oscilloscope
address.

Device Address = (Interface Select Code * 100) + Oscilloscope Address

The Oscilloscope is at Address 707 for Programming Examples

The programming examples in this manual assume that the oscilloscope is at
device address 707.

Interface Select Code

Each interface card has a unique interface select code. This code is used by
the computer to direct commands and communications to the proper interface.
The default is typically “7” for the GPIB interface cards.

Oscilloscope Address

Each oscilloscope on the GPIB must have a unique oscilloscope address
between decimal 0 and 30. This oscilloscope address is used by the computer
to direct commands and communications to the proper oscilloscope on an
interface. The default is typically “7” for this oscilloscope. You can change the
oscilloscope address in the Utilities, Remote Interface dialog box.

Do Not Use Address 21 for an Oscilloscope Address

Address 21 is usually reserved for the Computer interface Talk/Listen address, and
should not be used as an oscilloscope address.

2-7

LAN and GPIB Interfaces
Communicating Over the LAN Interface

Communicating Over the LAN Interface

The device address used to send commands and receive data using the LAN
interface is located in the GPIB Setup dialog box as shown below.

o
—GPIB Interface

GPIE Address ﬂl
-— oo |2

— LAMN Interface
SICL Address

IIan['I 30.29.71.458} hpib?.7 Debug... |

LAN Address

GPIB Setup Dialog Box

The following C example program shows how to communicate with the
oscilloscope using the LAN interface and the Agilent Standard Instrument
Control Library (SICL).

#include <sicl.h>
#define BUFFER_SIZE 1024

main()

{

INST Bus;

int reason;

unsigned long actualcnt;
char buffer[BUFFER_SIZE];

/* Open the LAN interface */
Bus = iopen(“1an[130.29.71.45]:hpib7,7");
if(Bus != 0) {
/* Bus timeout set to 20 seconds */
itimeout (Bus, 20000);

/* Clear the interface */

iclear(Bus);

/* Query and print the oscilloscope’s Id */

iwrite(Bus, “*IDN?”, 5, 1, &actualcnt);

iread(Bus, buffer, BUFFER_SIZE, &reason, &actualcnt);

2-8

LAN and GPIB Interfaces
Communicating Over the LAN Interface

buffer[actualcnt - 1] = 0;

printf(“%s\n”, buffer);
iclose(Bus);

2-9

LAN and GPIB Interfaces
Communicating via Telnet and Sockets

Communicating via Telnet and Sockets

Telnet

To open a connection to the oscilloscope via a telnet connection, use the
following syntax in a command prompt:

telnet Oscilloscope_IP_Address 5024

5024 is the port number and the name of the oscilloscope can be used in place
of the IP address if desired.

After typing the above command line, press enter and a SCPI command line
interface will open. You can then use this as you typically would use a command
line.

Sockets

Sockets can be used to connect to your oscilloscope on either a Windows or
Unix machine.

The sockets are located on port 5025 on your oscilloscope. Between ports 5024
and 5025, only 6 socket ports can be opened simultaneously. It is, therefore,
important that you use a proper close routine to close the connection to the
oscilloscope. If you forget this, the connection will remain open and you may
end up exceeding the limit of 6 socket ports.

Some basic commands used in communicating to your oscilloscope include:

e The receive command is: recv
e The send command is: send

2-10

LAN and GPIB Interfaces
Communicating via Telnet and Sockets

Below is a programming example (for a Windows-based machine) for opening
and closing a connection to your oscilloscope via sockets.

#include <winsock2.h>

Void main ()

{

WSADATA wsaData;

SOCKET mysocket = NULL;

char* ipAddress = “130.29.70.70";
const int ipPort = 5025

//Initialize Winsock
int iResult = WSAStartup (MAKEWORD(2,2), &wsaData) ;
if (iResult != NO_ERROR)
{
printf (“Error at WSAStartup()\n”);
return NULL;

// Create the socket
mySocket = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP) ;

if (mySocket == INVALID _SOCKET)

{
printf (“*Error at socket(): %1d\n”, WSAGetLastError());
WSACleanup () ;

return NULL;

sockaddr_in clientService;

clientService.sin_family = AF_INET;
clientService.sin_addr.s_addr = inet_addr (ipAddress) ;
clientService.sin_port = htons (ipPort) ;

if (connect (mySocket, (SOCKADDR*) &clientService,

sizeof (clientService)))

{
printf(“Failed to connect.\n”);
WSACleanup () ;
return NULL;

// Do some work here

// Close socket when finished
closesocket (mySocket) ;

2-11

LAN and GPIB Interfaces
Communicating via Telnet and Sockets

LAN and GPIB Interfaces
Bus Commands

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true).
IEEE 488.2 defines many of the actions that are taken when these commands
are received by the oscilloscope.

Device Clear

The device clear (DCL) and selected device clear (SDC) commands clear the
input buffer and output queue, reset the parser, and clear any pending
commands. If either of these commands is sent during a digitize operation, the
digitize operation is aborted.

Group Execute Trigger

The group execute trigger (GET) command arms the trigger. This is the same
action produced by sending the RUN command.

Interface Clear

The interface clear (IFC) command halts all bus activity. This includes
unaddressing all listeners and the talker, disabling serial poll on all devices, and
returning control to the system computer.

2-13

LAN and GPIB Interfaces
Bus Commands

2-14

Message Communication and System
Functions

Message Communication and System
Functions

This chapter describes the operation of oscilloscopes that operate in
compliance with the IEEE 488.2 (syntax) standard. Itisintended to give
you enough basic information about the IEEE 488.2 standard to
successfully program the oscilloscope. You can find additional detailed
information about the IEEE 488.2 standard in ANSI/IEEE Std 488.2-
1987, “IEEE Standard Codes, Formats, Protocols, and Common
Commands.”

This oscilloscope series is designed to be compatible with other Agilent
Technologies IEEE 488.2 compatible instruments. Oscilloscopes that
are compatible with IEEE 488.2 must also be compatible with IEEE 488.1
(GPIB bus standard); however, IEEE 488.1 compatible oscilloscopes
may or may not conform to the IEEE 488.2 standard. The IEEE 488.2
standard defines the message exchange protocols by which the
oscilloscope and the computer will communicate. It also defines some
common capabilities that are found in all IEEE 488.2 oscilloscopes.
This chapter also contains some information about the message
communication and system functions not specifically defined by

IEEE 488.2.

3-2

Message Communication and System Functions
Protocols

Protocols

The message exchange protocols of IEEE 488.2 define the overall scheme used
by the computer and the oscilloscope to communicate. This includes defining
when it is appropriate for devices to talk or listen, and what happens when the
protocol is not followed.

Functional Elements

Before proceeding with the description of the protocol, you should understand
a few system components, as described here.

Input Buffer

Output Queue

Parser

The input buffer of the oscilloscope is the
memory area where commands and queries are
stored prior to being parsed and executed. It
allows a computer to send a string of commands,
which could take some time to execute, to the
oscilloscope, then proceed to talk to another
oscilloscope while the first oscilloscope is
parsing and executing commands.

The output queue of the oscilloscope is the
memory area where all output data or response
messages are stored until read by the computer.

The oscilloscope's parser is the component
that interprets the commands sent to the
oscilloscope and decides what actions should be
taken. “Parsing” refers to the action taken by
the parser to achieve this goal. Parsing and
execution of commands begins when either the
oscilloscope recognizes a program message
terminator, or the input buffer becomes full. If
you want to send a long sequence of commands
tobe executed, then talk to another oscilloscope
while they are executing, you should send all of
the commands before sending the program
message terminator.

3-3

Message Communication and System Functions
Protocols

Protocol Overview

The oscilloscope and computer communicate using program messages and
response messages. These messages serve as the containers into which sets of
program commands or oscilloscope responses are placed.

A program message is sent by the computer to the oscilloscope, and a response
message is sent from the oscilloscope to the computer in response to a query
message. A query message is defined as being a program message that contains
one or more queries. The oscilloscope will only talk when it has received a valid
query message, and therefore has something to say. The computer should only
attempt to read a response after sending a complete query message, but before
sending another program message.

Remember this Rule of Oscilloscope Communication

The basic rule to remember is that the oscilloscope will only talk when prompted
to, and it then expects to talk before being told to do something else.

Protocol Operation

When you turn the oscilloscope on, the input buffer and output queue are
cleared, and the parser is reset to the root level of the command tree.

The oscilloscope and the computer communicate by exchanging complete
program messages and response messages. This means that the computer
should always terminate a program message before attempting to read a
response. The oscilloscope will terminate response messages except during a
hard copy output.

After you send a query message, the next message should be the response
message. The computer should always read the complete response message
associated with a query message before sending another program message to
the same oscilloscope.

The oscilloscope allows the computer to send multiple queries in one query
message. This is called sending a “compound query.” Multiple queries in a
query message are separated by semicolons. The responses to each of the
queries in a compound query will also be separated by semicolons.

Commands are executed in the order they are received.

Protocol Exceptions

If an error occurs during the information exchange, the exchange may not be
completed in a normal manner.

3-4

Message Communication and System Functions
Protocols

Suffix Multiplier
The suffix multipliers that the oscilloscope will accept are shown in Table 3-1.

Table 3-1 <suffix mult>
Value Mnemonic Value Mnemonic
1E18 EX 1E-3 M
1E15 PE 1E-6 U
1E12 T 1E-9 N
1E9 G 1E-12 P
1E6 MA 1E-15 F
1E3 K 1E-18 A
Suffix Unit

The suffix units that the oscilloscope will accept are shown in Table 3-2.

Table 3-2 <suffix unit>
Suffix Referenced Unit
v Volt
S Second

3-5

3-6

Status Reporting

Status Reporting

An overview of the oscilloscope's status reporting structure is shown in
Figure 4-1. The status reporting structure shows you how to monitor
specific events in the oscilloscope. Monitoring these events lets you
determine the status of an operation, the availability and reliability of
the measured data, and more.

¢ To monitor an event, first clear the event, then enable the event. All
of the events are cleared when you initialize the oscilloscope.

e To generate a service request (SRQ) interrupt to an external
computer, enable at least one bit in the Status Byte Register.

The Status Byte Register, the Standard Event Status Register group, and
the Output Queue are defined as the Standard Status Data Structure
Model in IEEE 488.2-1987. IEEE 488.2 defines data structures,
commands, and common bit definitions for status reporting. There are
also oscilloscope-defined structures and bits.

4-2

Figure 4-1

Trigger
Event —
Register
Status
Byte
Arm Operation gﬁetroﬂon Register
Event i Sfatus e C ol
Register Register '
Register
Output |,
Queue)
Error Service Service
Queue 3 Request [™ Request
Standard Enable Generation
Standard
Event Register
Event :
— Status —
Status
. Enable
Register
Key Register
Queue Service
54700803 Request(SRQ)
Interrupt
Message }
L to Computer
Queue
54800b45

Status Reporting Overview Block Diagram

Table 4-1

The status reporting structure consists of the registers shown here.

Table 4-1 lists the bit definitions for each bit in the status reporting data
structure.

Status Reporting Bit Definition

Bit Description Definition

PON Power On Indicates power is turned on.

URQ User Request Not Used. Permanently set to zero.

CME Command Error Indicates if the parser detected an error.

EXE Execution Error Indicates if a parameter was out of range or was
inconsistent with the current settings.

DDE Device Dependent Error Indicates if the device was unable to complete an
operation for device-dependent reasons.

QYE Query Error Indicates if the protocol for queries has been violated.

ROL Request Control Indicates if the device is requesting control.

4-3

Bit
oPC

OPER

ROS
MSS

ESB

MAV
MSG
USR

TRG

Description

Operation Complete

Definition

Indicates if the device has completed all pending
operations.

Operation Status Registerindicates if any of the enabled conditions in the

Request Service

Master Summary Status
Event Status Bit

Message Available
Message

User Event Register

Trigger

WAIT TRIG Wait for Trigger

Operation Status Register have occurred.
Indicates that the device is requesting service.

Indicates if a device has a reason for requesting
service.

Indicates if any of the enabled conditions in the
Standard Event Status Register have occurred.

Indicates if there is a response in the output queue.
Indicates if an advisory has been displayed.

Indicates if any of the enabled conditions have
occurred in the User Event Register.

Indicates if a trigger has been received.

Indicates the oscilloscope is armed and ready for
trigger.

4-4

Status Reporting
Status Reporting Data Structures

Status Reporting Data Structures

The different status reporting data structures, descriptions, and interactions
are shown in Figure 4-2. To make it possible for any of the Standard Event
Status Register bits to generate a summary bit, you must enable the
corresponding bits. These bits are enabled by using the *ESE common
command to set the corresponding bit in the Standard Event Status Enable
Register.

To generate a service request (SRQ) interrupt to the computer, you must enable
at least one bit in the Status Byte Register. These bits are enabled by using the
*SRE common command to set the corresponding bit in the Service Request
Enable Register. These enabled bits can then set RQS and MSS (bit 6) in the
Status Byte Register.

For more information about common commands, see the “Common Commands”
chapter.

4-5

Status Reporting
Status Reporting Data Structures

Figure 4-2

7 6 5 4 3 2 1 0
Mask ___ | ___ |ALIGN|ALIGN| HIGH| Low Read by:
Teegisver! FAIL |coMP | aMp | AMp | PATL| COMP | MTER?

Mask Test
Event Enable

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Set by: MTEE

Register Read by: MTEE?
7 6 5 4 3 2 1 0
Over load Read by:
ven === | === | === | =~ |Chan4|Chan3|Chan2|Chan1 oyLR?
Register

Over load
Event Enable
Register

Read by: . [] Read by: PPN [| Read by:
Au!e ATER? Trigger AER? Acgisition ADER?
Trigger AUTO Armed Done ACQ
Event Rie Event ARM Event oNE
Register Register Register
Read by:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 [OPER?
Operation I R R AUTO| ___ o WA | | | - |AcCa
Regtoier OVLR| TR1G MASK TRIG DONE
o . I I I I I I I I I I I T I T T I Set by:
eration
S'u?us Enable OPEE
Register Read by
OPEE?
To BIt 7 of
Status Byte Register 54855b46

Status Reporting Data Structures

4-6

Figure 4-2 (Continued)

Status Reporting
Status Reporting Data Structures

Read by:
7 6 5 4 3 2 1 o] YESR?
Standard
Event Status PON | URQ CME | EXE | DDE | QYE | RQC OPC
Register
[[[[[[[[
Standard Set by: xESE <NRf>
Event RSET;iTSuTsEFEnuble Read by: xESE?
Read by:
+ Read by: TER?
:SYST:DSP? Trigger
Message Event | TRG
Even%| * Register
Register
From Operation
Status Register Output
Queue
—~s—— Read by: SERIAL POLL
Read by:
7 6 5 4 3 2 1 o] %STB?
Status RQS
yte OPER ESB | MAV | —-- | MSG - TRG
Register MSS
[[I I I
R Ser?viEcem Set by: %SRE<NRf>
“TRegister © Read by: xSRE?
X Messages sent to the display via :SYST:DSP
will not set this bit. The bit is set only
54800b47 SRQ by internal messages.

Status Reporting Data Structures (Continued)

4-7

Status Reporting
Status Byte Register

Status Byte Register

The Status Byte Register is the summary-level register in the status reporting
structure. It contains summary bits that monitor activity in the other status
registers and queues. The Status Byte Register is a live register. That is, its
summary bits are set and cleared by the presence and absence of a summary
bit from other event registers or queues.

If the Status Byte Register is to be used with the Service Request Enable
Register to set bit 6 (RQS/MSS) and to generate an SRQ, at least one of the
summary bits must be enabled, then set. Also, event bits in all other status
registers must be specifically enabled to generate the summary bit that sets the
associated summary bit in the Status Byte Register.

You canread the Status Byte Register using either the *STB? common command
query or the GPIB serial poll command. Both commands return the decimal-
weighted sum of all set bits in the register. The difference between the two
methods is that the serial poll command reads bit 6 as the Request Service
(RQS) bit and clears the bit which clears the SRQ interrupt. The *STB? query
reads bit 6 as the Master Summary Status (MSS) and does not clear the bit or
have any effect on the SRQ interrupt. The value returned is the total bit weights
of all of the bits that are set at the present time.

The use of bit 6 can be confusing. This bit was defined to cover all possible
computer interfaces, including a computer that could not do a serial poll. The
important point to remember is that if you are using an SRQ interrupt to an
external computer, the serial poll command clears bit 6. Clearing bit 6 allows
the oscilloscope to generate another SRQ interrupt when another enabled event
occurs.

The only other bit in the Status Byte Register affected by the *STB? query is
the Message Available bit (bit 4). If there are no other messages in the Output
Queue, bit 4 (MAV) can be cleared as a result of reading the response to the
*STB? query.

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, a program would print the
sum of the two weights. Since these bits were not enabled to generate an SRQ),
bit 6 (weight = 64) is not set.

4-8

Example 1

Example 2

Status Reporting
Status Byte Register

This HP BASIC example uses the *STB? query to read the contents of the
oscilloscope’s Status Byte Register when none of the register's summary bits
are enabled to generate an SRQ interrupt.

10 OUTPUT 707; " :SYSTEM:HEADER OFF; *STB?" 'Turn headers off
20 ENTER 707;Result 'Place result in a numeric variable
30 PRINT Result 'Print the result

40 End

The next program prints 132 and clears bit 6 (RQS) of the Status Byte Register.
The difference in the decimal value between this example and the previous one
is the value of bit 6 (weight = 64). Bit 6 is set when the first enabled summary
bit is set, and is cleared when the Status Byte Register is read by the serial poll
command.

This example uses the HP BASIC serial poll (SPOLL) command to read the
contents of the oscilloscope’s Status Byte Register.

10 Result = SPOLL(707)

20 PRINT Result

30 END

Use Serial Polling to Read the Status Byte Register

Serial polling is the preferred method to read the contents of the Status Byte
Register because it resets hit 6 and allows the next enabled event that occurs to

generate a new SRQ interrupt.

4-9

Status Reporting
Service Request Enable Register

Example

Service Request Enable Register

Setting the Service Request Enable Register bits enables corresponding bits in
the Status Byte Register. These enabled bits can then set RQS and MSS (bit 6)
in the Status Byte Register.

Bits are set in the Service Request Enable Register using the *SRE command,
and the bits that are set are read with the *SRE? query. Bit 6 always returns 0.
Refer to the Status Reporting Data Structures shown in Figure 4-2.

This example sets bit 4 (MAV) and bit 5 (ESB) in the Service Request Enable
Register.

OUTPUT 707;"*SRE 48"

This example uses the parameter “48” to allow the oscilloscope to generate an
SRQ interrupt under the following conditions:

e When one or more bytes in the Output Queue set bit 4 (MAV).

e When an enabled event in the Standard Event Status Register generates a
summary bit that sets bit 5 (ESB).

Message Event Register

This register sets the MSG bit in the status byte register when an internally
generated message is written to the advisory line on the oscilloscope. The
message is read using the :SYSTEM:DSP? query. Note that messages written
to the advisory line on the oscilloscope using the :SYSTEM:DSP command does
not set the MSG status bit.

Trigger Event Register

This register sets the TRG bit in the status byte register when a trigger event
occurs.

The trigger event register stays set until it is cleared by reading the register
with the TER? query or by using the *CLS (clear status) command. If your
application needs to detect multiple triggers, the trigger event register must be
cleared after each one.

If you are using the Service Request to interrupt a computer operation when
the trigger bit is set, you must clear the event register after each time it is set.

4-10

Status Reporting
Standard Event Status Register

Example

Standard Event Status Register

The Standard Event Status Register (SESR) monitors the following oscilloscope
status events:

e PON - Power On

e CME - Command Error

e EXE - Execution Error

e DDE - Device Dependent Error
e QYE - Query Error

¢ RQC - Request Control

e OPC - Operation Complete

When one of these events occurs, the corresponding bit is set in the register.
If the corresponding bit is also enabled in the Standard Event Status Enable
Register, a summary bit (ESB) in the Status Byte Register is set.

You can read the contents of the Standard Event Status Register and clear the
register by sending the *ESR? query. The value returned is the total bit weights
of all bits set at the present time.

This example uses the *ESR? query to read the contents of the Standard Event
Status Register.

10 OouTpPUT 707;":SYSTEM:HEADER OFF" !Turn headers off

20 OUTPUT 707;"*ESR?"

30 ENTER 707;Result !Place result in a numeric variable
40 PRINT Result 'Print the result

50 End

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, the program prints the
sum of the two weights.

4-11

Status Reporting
Standard Event Status Enable Register

Example

Standard Event Status Enable Register

For any of the Standard Event Status Register bits to generate a summary bit,
you must first enable the bit. Use the *ESE (Event Status Enable) common
command to set the corresponding bit in the Standard Event Status Enable
Register. Set bits are read with the *ESE? query.

Suppose your application requires an interrupt whenever any type of error
occurs. The error status bits in the Standard Event Status Register are bits

2 through 5. The sum of the decimal weights of these bits is 60. Therefore, you
can enable any of these bits to generate the summary bit by sending:

OUTPUT 707;"*ESE 60"

Whenever an error occurs, the oscilloscope sets one of these bits in the Standard
Event Status Register. Because the bits are all enabled, a summary bit is
generated to set bit 5 (ESB) in the Status Byte Register.

If bit 5 (ESB) in the Status Byte Register is enabled (via the *SRE command),
a service request interrupt (SRQ) is sent to the external computer.

Disabled Standard Event Status Register Bits Respond, but Do Not Generate a
Summary Bit

Standard Event Status Register hits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event occurs).
However, because they are not enabled, they do not generate a summary bit in the
Status Byte Register.

Status Reporting
Operation Status Register

Operation Status Register

This register hosts the following bits:

e Acquisition done bit (bit 0)

WAIT TRIG bit (bit 5)

Mask Test Summary bit (bit 9)

Auto trigger bit (bit 11)

Overload Summary bit (bit 12)

The acquisition done bit is set by the Acquisition Done Event Register.

The WAIT TRIG bit is set by the Trigger Armed Event Register and indicates
the trigger is armed.

The Mask Test Summary bit is set whenever at least one of the Mask Test Event
Register bits is enabled.

The auto trigger bit is set by the Auto Trigger Event Register.

The Overload Summary bit is set whenever at least one of the Overload Event
Register bits is enabled.

If any of these bits are set, the OPER bit (bit 7) of the Status Byte Register is
set. The Operation Status Register is read and cleared with the OPER? query.
The register output is enabled or disabled using the mask value supplied with
the OPEE command.

4-13

Status Reporting
Operation Status Enable Register

Example

Operation Status Enable Register

For any of the Operation Status Register bits to generate a summary bit, you
must first enable the bit. Use the OPEE (Operation Event Status Enable)
command to set the corresponding bit in the Operation Status Enable Register.
Set bits are read with the OPEE? query.

Suppose your application requires an interrupt whenever any event occurs in
the mask test register. The error status bit in the Operation Status Register is
bit 9. Therefore, you can enable this bit to generate the summary bit by sending;:
OUTPUT 707;“OPEE 512” (hex 200)

Whenever an error occurs, the oscilloscope sets this bit in the Mask Test Event
Register. Because this bit is enabled, a summary bit is generated to set bit 9
(OPER) in the Operation Status Register.

If bit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command),
a service request interrupt (SRQ) is sent to the external computer.

Disabled Operation Status Register Bits Respond, but Do Not Generate a Summary
Bit

Operation Status Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event occurs).
However, because they are not enabled, they do not generate a summary bit in the
Status Byte Register.

4-14

Status Reporting
Mask Test Event Register

Mask Test Event Register

This register hosts the following bits:
e Mask Test Complete bit (bit 0)

e Mask Test Fail bit (bit 1)

e Mask Low Amplitude bit (bit 2)

e Mask High Amplitude bit (bit 3)

e Mask Align Complete bit (bit 4)

e Mask Align Fail bit (bit 5)

The Mask Test Complete bit is set whenever the mask test is complete.
The Mask Test Fail bit is set whenever the mask test failed.

The Mask Low Amplitude bit is set whenever the signal is below the mask
amplitude.

The Mask High Amplitude bit is set whenever the signal is above the mask
amplitude.

The Mask Align Complete bit is set whenever the mask align is complete.
The Mask Align Fail bit is set whenever the mask align failed.

If any of these bits are set, the MASK bit (bit 9) of the Operation Status Register
is set. The Mask Test Event Register is read and cleared with the MTER? query.
The register output is enabled or disabled using the mask value supplied with
the MTEE command.

4-15

Status Reporting
Mask Test Event Enable Register

Example

Mask Test Event Enable Register

For any of the Mask Test Event Register bits to generate a summary bit, you
must first enable the bit. Use the MTEE (Mask Test Event Enable) command
to set the corresponding bit in the Mask Test Event Enable Register. Set bits
are read with the MTEE? query.

Suppose your application requires an interrupt whenever a Mask Test Fail
occursinthe mask test register. You can enable this bit to generate the summary
bit by sending:

OUTPUT 707; “MTEE 2"

Whenever an error occurs, the oscilloscope sets the MASK bit in the Operation
Status Register. Because the bits in the Operation Status Enable Register are
all enabled, a summary bit is generated to set bit 7 (OPER) in the Status Byte
Register.

If bit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command),
a service request interrupt (SRQ) is sent to the external computer.

Disabled Mask Test Event Register Bits Respond, but Do Not Generate a Summary
Bit

Mask Test Event Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event occurs).
However, because they are not enabled, they do not generate a summary bit in the
Operation Status Register.

4-16

Status Reporting
Trigger Armed Event Register

Trigger Armed Event Register

This register sets bit 5 (Wait Trig bit) in the Operation Status Register and bit
7 (OPER bit) in the Status Byte Register when the oscilloscope becomes armed.

The ARM event register stays set until it is cleared by reading the register with
the AER? query or by using the *CLS command. If your application needs to
detect multiple triggers, the ARM event register must be cleared after each one.

If you are using the Service Request to interrupt the computer operation when
the trigger bit is set, you must clear the event register after each time it is set.

Acquisition Done Event Register

This register sets bit 0 (Acq Done bit) in the Operation Status Register and bit
7 (OPER bit) in the Status Byte Register when the oscilloscope acquisition is
completed.

The DONE event register stays set until it is cleared by reading the register with
the ADER? query or by using the *CLS command. If your application needs to
detect multiple acquisitions, the DONE event register must be cleared after
each acquisition.

If you are using the Service Request to interrupt the computer operation when
the trigger bit is set, you must clear the event register after each time it is set.

4-17

Status Reporting
Error Queue

Error Queue

As errors are detected, they are placed in an error queue. This queue is a first-
in, first-out queue. If the error queue overflows, the last error in the queue is
replaced with error -350, “Queue overflow.” Any time the queue overflows, the
oldest errors remain in the queue, and the most recent error is discarded. The
length of the oscilloscope's error queue is 30 (29 positions for the error
messages, and 1 position for the “Queue overflow” message).

The error queue isread with the :SYSTEM:ERROR? query. Executing this query
reads and removes the oldest error from the head of the queue, which opens a
position at the tail of the queue for a new error. When all the errors have been
read from the queue, subsequent error queries return 0, “No error.”

The error queue is cleared when any of these events occur:

e When the oscilloscope is powered up.

e When the oscilloscope receives the *CLS common command.
e When the last item is read from the error queue.

For more information on reading the error queue, refer to the
:SYSTEM:ERROR? query in the System Commands chapter. For a complete
list of error messages, refer to the chapter, “Error Messages.”

Output Queue

The output queue stores the oscilloscope-to-computer responses that are
generated by certain oscilloscope commands and queries. The output queue
generates the Message Available summary bit when the output queue contains
one or more bytes. This summary bit sets the MAV bit (bit 4) in the Status Byte
Register. You may read the output queue with the HP Basic ENTER statement.

4-18

Status Reporting
Message Queue

Message Queue

The message queue contains the text of the last message written to the advisory
line on the screen of the oscilloscope. The queue is read with the
:SYSTEM:DSP? query. Note that messages sent with the :SYSTEM:DSP
command do not set the MSG status bit in the Status Byte Register.

Clearing Registers and Queues

The *CLS common command clears all event registers and all queues except
the output queue. If *CLS is sent immediately following a program message
terminator, the output queue is also cleared.

4-19

Figure 4-3

Do you want
to do status
reporting?

Reset the instrument
and clear the staotus
registers

QUTPUT 787 ;"*RST"
QUTPUT 707, "«CLS"

;m

Do you want to

send a Service Request no

(SRQ) interrupt to the
controller?

Do you want to
report events monitored by
the Standard Event Status
Register?

Use the *ESE common command
to enable the bits you want to
use to generate o summary bit
to the Status Byte Register.

<

v

'

Use the following to
read the Staondord
Event Status Register:
OUTPUT 7@7;'"xESR?
ENTER 707;<variable>
PRINT <variable>

Activate the instrument function
that you want to monitor.

'

When an interrupt occurs, read
the Status Byte Register. Use the
following: P=SPOLL(707)

PRINT P

Y

¥

Use the #ESE common command to
enable the bits you want to
generate the RQS/MSS bit to set
bit 6 in the Stotus Byte Register
and send an SRQ to the computer.
If events ore monitored by the
Standard event Status Register
alsa Enable ESB with *SRE command.

'

To read the Status Byte Register
use the following:

OUTPUT 7@7;"*5TB?"

ENTER 7@7;<vaoriable>

PRINT <variable>

This reads the decimal value of
the Stotus Byte Register.

Use the following to
see if an operation
is complete:

OUTPUT 7@7;"x0PC?
ENTER 7@7;<variable>
PRINT <variable>

¥

'

Determine which bits in the
Status Byte Register are set.

Use the following to
read the contents of
the status byte:
OUTPUT 7@7;"+8TB?
ENTER 707;<variable>
PRINT <variable>

B END |- 54700805

Status Reporting Decision Chart

4-20

Remote Acquisition Synchronization

Introduction

When remotely controlling an oscilloscope with SCPI commands, it is often
necessary to know when the oscilloscope has finished the previous operation
and is ready for the next SCPI command. The most common example is when
an acquisition is started using the :DIG, :RUN, or :SINGLE commands. Before a
measurement result can be queried, the acquisition must complete. Too often,
fixed delays are used to accomplish this wait, but fixed delays often use
excessive time or the time may not be long enough. A better solution is to use
synchronous commands and status to know when the oscilloscope is ready for
the next request.

[\

Programming Flow

Most remote programming follows these three general steps:

Setup the oscilloscope and device under test
Acquire a waveform
Retrieve results

Setting Up the Oscilloscope

Before making changes to the oscilloscope setup, it is best to make sure it is
stopped using the :STOP command followed by the *OPC? command.

NOTE: It is not necessary to use the *OPC? command, hard coded waits, or
status checking when setting up the oscilloscope.

After the oscilloscope is configured, it is ready for an acquisition.

5-2

Remote Acquisition Synchronization

Acquiring a Waveform

Acquiring a Waveform

When acquiring a waveform, there are two possible methods used to wait for
the acquisition to complete. These methods are blocking and polling. The table
below details when each method should be chosen and why.

Table 0-1
Blocking Wait Polling Wait
Use When You know the You know the
oscilloscope will oscilloscope may or

trigger based on the may not trigger based
oscilloscope setup and on the oscilloscope

device under test setup and device under
test
Advantages * No need for polling * Remote interface

¢ Fast method

Disadvantages ¢ Remote interface
may timeout .
e Device clear only
way to get control °
of oscilloscope if
there is no trigger

will not timeout
No need for device
clear if no trigger

Slower method
Required polling
loop

Required known
maximum wait
time

Retrieving Results

Once the acquisition is complete, it is safe to retrieve measurements and

statistics.

5-3

Remote Acquisition Synchronization
Acquisition Synchronization

Acquisition Synchronization

Blocking Synchronization

Use the :DIGitize command to start the acquisition. This blocks subsequent
queries until the acquisition and processing is complete.

Example // Setup
: TRIGGER:MODE EDGE
: TIMEBASE: SCALE 5e-9

//Acquire
:DIG

//Get results
:MEASURE:RISETIME?

Polling Synchronization With Timeout

This example requires a timeout value so the operation can abort if an
acquisition does not occur within the timeout period.

Example TIMEOUT = 1000ms
currentTime = Oms
// Setup
:STOP; *OPC? // if not stopped
:ADER? // clear ADER event
// Acquire
: SINGLE

while(currentTime <= TIMEOUT)
{
if (:ADER? == 1)
{
break;

}

5-4

Remote Acquisition Synchronization
Single Shot Device Under Test (DUT)

else

{

// Use small wait to prevent excessive
// dqueries to the oscilloscope

wait (100ms)

currentTime += 100ms

}

//Get results
if (currentTime < TIMEOUT)
{

:MEASURE:RISETIME?

}

Single Shot Device Under Test (DUT)

The examples in the previous section (Acquisition Synchronization) assumed
the DUT is continually running and, therefore, the oscilloscope will have more
than one opportunity to trigger. With a single shot DUT, there is only one
opportunity for the oscilloscope to trigger so it is necessary for the oscilloscope
to be armed and ready before the DUT is enabled.

NOTE: The blocking :DIGitize command cannot be used for a single shot DUT
because once the :DIGitize command is issued, the oscilloscope is blocked from
any further commands until the acquisition is complete.

5-5

Remote Acquisition Synchronization
Single Shot Device Under Test (DUT)

This example is the same as the previous example with the addition of checking
for the armed event status.

Example TIMEOUT = 1000ms
currentTime = Oms
// Setup
:STOP; *OPC? // if not stopped
:ADER? // clear ADER event
// Acquire
: SINGLE
while (AER? == 0)

{
wait (100ms)
}

//oscilloscope is armed and ready, enable DUT here

while (currentTime <= TIMEOUT)
{
if (:ADER? == 1)
{
break;
}
else
{
// Use small wait to prevent excessive
// queries to the oscilloscope
wait (100ms)
currentTime += 100ms

}

//Get results
if (currentTime < TIMEOUT)
{
:MEASURE:RISETIME?
}

5-6

Remote Acquisition Synchronization
Averaging Acquisition Synchronization

Example

Averaging Acquisition Synchronization

When averaging, it is necessary to know when the average count has been
reached. Since an ADER/PDER event occurs for every acquisition in the average
count, these commands cannot be used. The :SINGle command does not
average.

If it is known that a trigger will occur, a :DIG will acquire the complete number
of averages, but if the number of averages is large, it may cause a timeout on
the connection.

The example below acquires the desired number of averages and then stops
running.

AVERAGE_COUNT = 256

: STOP; *OPC?

: TER?

:ACQ:AVERage: COUNt AVERAGE_COUNT
:ACQ:AVERage ON

: RUN

//Assume the oscilloscope will trigger, if not put a check here
while (:WAV:COUNT? < AVERAGE_COUNT)
{
wait (100ms)
}
:STOP; *OPC?

// Get results

5-7

Remote Acquisition Synchronization
Averaging Acquisition Synchronization

5-8

Programming Conventions

Programming Conventions

This chapter describes conventions used to program the Infiniium-Series
Oscilloscopes, and conventions used throughout this manual. A
description of the command tree and command tree traversal is also
included.

6-2

Programming Conventions
Truncation Rule

Table 6-1

Truncation Rule

The truncation rule is used to produce the short form (abbreviated spelling) for
the mnemonics used in the programming headers and parameter arguments.

Command Truncation Rule

The mnemonic is the first four characters of the keyword, unless the fourth
character is a vowel. Then the mnemonic is the first three characters of the
keyword. If the length of the keyword is four characters or less, this rule does not

apply. and the short form is the same as the long form.

Table 6-1 shows how the truncation rule is applied to commands.

Mnemonic Truncation

Long Form ShortForm How the Rule is Applied

RANGE RANG Short form is the first four characters of the keyword.

PATTERN PATT Short form is the first four characters of the keyword.

DISK DISK Short form is the same as the long form.

DELAY DEL Fourth character is a vowel; short form is the first three
characters.

6-3

Programming Conventions
The Command Tree

The Command Tree

The command tree in Figure 6-1 shows all of the commands in the Infiniium-
Series Oscilloscopes and the relationship of the commands to each other. The
IEEE 488.2 common commands are not listed as part of the command tree
because they do not affect the position of the parser within the tree.

When a program message terminator (<NL>, linefeed - ASCII decimal 10) or a
leading colon (:) is sent to the oscilloscope, the parser is set to the “root” of the
command tree.

Command Types

The commands in this oscilloscope can be viewed as three types: common
commands, root level commands, and subsystem commands.

Common commands are commands defined by IEEE 488.2 and control some
functions that are common to all IEEE 488.2 instruments. These commands
are independent of the tree and do not affect the position of the parser within
the tree. *RST is an example of a common command.

Root level commands control many of the basic functions of the oscilloscope.
These commands reside at the root of the command tree. They can always
be parsed if they occur at the beginning of a program message or are
preceded by a colon. Unlike common commands, root level commands place
the parser back at the root of the command tree. AUTOSCALE is an example
of a root level command.

Subsystem commands are grouped together under a common node of the
command tree, such as the TIMEBASE commands. You may select only one
subsystem at a given time. When you turn on the oscilloscope initially, the
command parser is set to the root of the command tree and no subsystem is
selected.

6-4

Programming Conventions
The Command Tree

Tree Traversal Rules

Command headers are created by traversing down the command tree. A legal
command header from the command tree would be :TIMEBASE:RANGE. This
is referred to as a compound header. A compound header is a header made up
of two or more mnemonics separated by colons. The compound header contains
no spaces. The following rules apply to traversing the tree.

Tree Traversal Rules

Aleading colon or a program message terminator (<NL> or EQI true on the last byte)
places the parser at the root of the command tree. A leading colon is a colon that
is the first character of a program header. Executing a subsystem command places
the oscilloscope in that subsystem until a leading colon or a program message
terminator is found.

In the command tree, use the last mnemonic in the compound header as a
reference point (for example, RANGE). Then find the last colon above that
mnemonic (TIMEBASE:). That is the point where the parser resides. You can
send any command below this point within the current program message
without sending the mnemonics which appear above them (for example,
REFERENCE).

6-5

Figure 6-1

Common

Commands

(LS
»ESE
»ESR?
SIDN?
sLRM?
x0PC

»OPT?
«PSC

=PSC?
“RCL

SRST
KSAY

*SRE
~STB?
»TRG
~TST?
sl d

54830012

Command Tree

Programming Conventions
The Command Tree

(roof)
| ‘ _

ADER?
AER? SYSTem: ACQuire CalLibrate: CHAMRel: DISK: DISPlay:
ATER?
AUToscale DATE AVERage OUTPut (DIPectory CGRade
BLAl b DEBug AYERage:COUNT SEEW DELete CGPadelLEYels?
CDISplay DsP COMPlete STaTus? DIRectory? COLumn
DiGitize ERRor? COMPlete:STATe LO2D COlltlect
DISable HEADer NTerpolate “DIRectory DATA?
EMABle LOcC 10DE Pwh? DCOLor
MTEE LOMGform POIMts Sar edMaGe GRATicule
MTER? PRESet SEGHented:COUN! Sa' eMEASurements LABel
MODel? SETup SEGHMented:NDex St el ISTing IHE
OPEE TIME SEGI lented:TTAGs Sar e:SETup PERSistence
OPER? SR2Te ’7 Savemaveform RO
OVLEnable SR2Te:AUTO *‘ SEGMented SCOLor
OVLRegister BuiLimif PROBe: STRing
PRINI DISPlay TE T
RECall:SETup II'Put ATTenuation
RUN OFFSef EADapter
SERial PROBe ECoupling
SINGle RANGe EXTernal
STATuUS? SCALe GAIN
STOP UliTs D?
STORe:SETup Sl([\ﬁ/
STORe:W-Yefarm STyPe
TER?
YIEW

Figure 6-2

Programming Conventions

The Command Tree

= |

EXTernal:

h‘ﬁ

BwLimit PROBe:
INPuUt
PROBe ATTenuation
RANGe EADapter
UNITs ECoupling
EXTernal
GAIN
D7
SKEW

Command Tree (Continued)

FUNCHon<N=>

ABSolutfe FET: HORIZontal:

ADD

AVERage FREQuency FPOSition
COMMonmode RESolutian RANGe
DIFF WINDow
DISPlay

DIVide

FFTMagnitude
FFTPhase
FUNCtion<N=>?
HIGHpass

HORizontal

INTegrate

INVert

LOWPass

MAGNIfy

MAXImum

MINImum

MUL Tiply

OFFSet

RANGe

SMOath

SQRT

SQUare

SUBTract

VERSus

VERTIcal

54830013

VERTIcal:

OFFset
RANGe

6-7

Figure 6-3

Programming Conventions
The Command Tree

-

HARDcopy:

AREA
DPRinter
FACTors
IMAGe
PRINTers?

HISTogram:

AXIS SCALE: WINDow:
MODE

SIZE DEFault
SOURce
X1Position|LLIMit
X2Position|RLIMit
Y1Pasition|TLIMit
Y 2Position|BLIMit

Command Tree (Continued)

Marker:

CURsor?

MEASurement:READout

MODE
TDELta?
TSTArt
TSTOp
VDELta?
VSTArt
VSTOp
X1Pasition
XZPosition
X1Y1source
X2Y2source
XDELta?
Y1Pasition
YZPosition
YDELta?

54830004

6-8

Figure 6-4

Programming Conventions

!

SCRatch|CLEar
SENDvalid
SETuptime
SOUPce
STATistics
TEDGe
IEClock
TIEData
THAX

THIN

TYOLt
UNITinterval
AllPlitude

A erage
BASe
LOV/e
MA L
HMDdle
MIN
PP
RMS
[IMe
ror
UPPer

E&Sure

AREA CGRde:
BWIDth
CLEar|SCRatch CROSsing
CcLocr CROSsing?
CTCDut, cycle DCDistortion
CTClitte DCDisfortion?
CTCNwidth EHEIght
CTCPwidth EHEIght?
D&Tarafe EWIDIh
DEFine EWIDIR?
DEL Tatime JTTer
DUTYcycle ITTer?
FALLtIme OFACtor
FREQuenc, QFACtor?
[ICJitter
FV/IDTh
OVERshoot
PERiod
PHASe
PPEShoot
PV/IDth
QUALIfier | |=
PESults?
PlISetime

Command Tree (Continued)

FFT:

DFPequency
Dl l~Gnifude
FREQuency
M- Gnitude
PE~F1
PEAV2

THPeshoald

HISTagram:

hn Z Z
N]

157

PEAK
PEAK?
Pp

PP?
STDDex
STDDe ?

v

METHod
VERTical

The Command Tree

JITTer:

HISTogram
ME «Surement
SPECtrum
STATistics
TRENd

6-9

Figure 6-5
-

Programming Conventions

The Command Tree

MTESH:

ALIGN
AlignFIT
AUTO
AVERage
AVERage:COUNt
DElLefe
ENABle
FOLDIing
HAMPlitude
IMPedance
INVert
LAMPlitude
LOAD
NREGions?

AMASK: COUNT:

CREate FAlLures?
SAVE|STORe FWAVeforms?
SOURce WAVeforms?
UNITs

XDELta

YDELta

PROBe:IMPedance?

RUMode

RUMode:SOFailure

SOURCce
STIMe
STARHSTOP
TITLe?
TRIGger

Command Tree (Continued)

SCALe:

BIND
XDELta
X1

Y1

Y2

SELFtest:

AttenSET?
CANCel
SCOPETEST

=

TIMebase:

C

POSition WINDOW:
RANGe

REFerence DELay

ROLL:ENABLE POSition
SCALe RANGe

VIEW SCALe

54830b1¢

6-10

Programming Conventions
The Command Tree

Figure 6-6
= | |
TRIGger: WMEMory<N>: WAVeform:
| | | DISPlay BANDpass?
LOAD BYTeorder
ADVanced: EDGE: GLITch: HOLDoff SAVE COMPlete?
HYSTeresis XOFFset COUNt?
COUPling POLarity LEVel XRANge COUPling?
SLOPe SOURce SWEep YOFFset DATA?
SOURce WIDTh MODE YRANge FORMat
ADVanced POINts?
EDGE PREamble
| ‘ ‘ GLITch SEGMented
’ SOURce
DELay: MODE: PATTern: STATe: TV: VIOLThon: TYPE?
MODE COMM CONDition CLOCk MODE | | 15‘;@?
EDLY DELay LOGic CONDition L525 B XINCrement?
TDLY PATTern THReshold LOGic L625 MODE PWIDth: SETup: TRANSsition: CORGIn?
EDLY: STATe SLOPe UDTV PWIDth g i
ARM: TV THReshold STV: SETup DIRection MODE GTHan *RANge?
SOURce VIOLation FIELd TRANSsition POLarity HOLD LTHan XREFerencer
SLOPe LINE SOURce SETup SOURce: XUNits?
EVENT: SOURce WIDTh SHOLd HTHReshold 'D'SPlay?
K YINCrement?
DELay SPOLarity LEVel VORIGin?
SOURce UDTV: | LTHReshow an’
SLOPe ENUMper | | TYPE :gélt‘gree?nce?
TRIGger: PGTHan YUNits?
SOURce POLarity SETup: HOLD: SHOLd:
SLOPe SOURce
TDLY: CSOurce: CSOurce: CSOurce:
ARM: EDGE EDGE EDGE
SOURce LEVel LEVel LEVel
SLOPe DSOurce: DSOurce: DSOurce:
DELay HTHReshold HTHReshold HTHReshold
TRIGger: LTHReshold LTHReshold LTHReshold
SOURce TIME TIME HoldTIMe
SLOPe SetupTIMe 54830017

Command Tree (Continued)

6-11

Programming Conventions
The Command Tree

Figure 6-7
BUS<N>, DIGital<N>, and POD<N>
commands only available on the MSO
oscilloscopes
—=
| |
BUS == DiGital=H=: POD= -
BIT -1 DISPlay DISPlay
BITS L aBel THReshold
CLEar SIZE PSke
CLOCK THReshold
DISPlay
L ABel 5.830b 11
READout

Command Tree (Continued)

Figure 6-8
| |
ISCan: LTESt:
DELay FAIL
MEASurement LLIMit
FAIL TEST
LLIMit RESults?
MEASurement ULIMit
TEST
ULIMit
MODE

NONMonotonic
EDGE
HYSTeresis
SOURce

RUNT
HYSteresis
LLEVel
SOURce
ULEVel

SERial
PATTern
SOURce

ZONE<N>
MODE
PLACement
SOURce
STATe

Command Tree (Continued)

54830cmdd.cdr

Programming Conventions

The Command Tree

6-13

Example 1

Example 2

Example 3

Programming Conventions
The Command Tree

Tree Traversal Examples

The OUTPUT statements in the following examples are written using
HP BASIC 5.0. The quoted string is placed on the bus, followed by a carriage
return and linefeed (CRLF).

Consider the following command:
OUTPUT 707; " :CHANNEL1:RANGE 0.5;0FFSET 0"

The colon between CHANNEL1 and RANGE is necessary because
:CHANNEL1:RANGE is a compound command. The semicolon between the
RANGE command and the OFFSET command is required to separate the two
commands or operations. The OFFSET command does not need :CHANNEL1
preceding it because the :CHANNEL1:RANGE command sets the parser to the
CHANNELI node in the tree.

Consider the following commands:
OUTPUT 707;":TIMEBASE:REFERENCE CENTER;POSITION 0.00001"
or

OUTPUT 707; " :TIMEBASE:REFERENCE CENTER"
OUTPUT 707;":TIMEBASE:POSITION 0.00001"

In the first line of example 2, the “subsystem selector” is implied for the
POSITION command in the compound command.

A second way to send these commands is shown in the second part of the
example. Because the program message terminator places the parser back at
the root of the command tree, you must reselect TIMEBASE to re-enter the
TIMEBASE node before sending the POSITION command.

Consider the following command:
OUTPUT 707;":TIMEBASE:REFERENCE CENTER; : CHANNELL:OFFSET 0"

In this example, the leading colon before CHANNEL1 tells the parser to go back
to the root of the command tree. The parser can then recognize the
:CHANNEL1:0OFFSET command and enter the correct node.

6-14

Programming Conventions
Infinity Representation

Infinity Representation

The representation for infinity for this oscilloscope is 9.99999E+37. This is also
the value returned when a measurement cannot be made.

Sequential and Overlapped Commands

IEEE 488.2 makes a distinction between sequential and overlapped commands.
Sequential commands finish their task before the execution of the next
command starts. Overlapped commands run concurrently. Commands
following an overlapped command may be started before the overlapped
command is completed.

Response Generation

As defined by IEEE 488.2, query responses may be buffered for these reasons:
e When the query is parsed by the oscilloscope.

e When the computer addresses the oscilloscope to talk so that it may read the
response.

This oscilloscope buffers responses to a query when the query is parsed.

EOI

The EOI bus control line follows the IEEE 488.2 standard without exception.

6-15

6-16

Sample Programs

Sample Programs

Sample programs for the Infiniium-Series Oscilloscopes are shipped on
a CD ROM with the instrument. Each program demonstrates specific
sets of instructions.

This chapter shows you some of those functions, and describes the
commands being executed. Both C and BASIC examples are included.

The header file is:
e gpibdecl.h

The C examples include:
¢ init.c

® gen_srq.c

® gsrqgagi.c

® srqgnat.c

e learnstr.c

e sicl_IO.c

e natl_IO.c

The BASIC examples include:

e jnit.bas
e srqg.bas
e Irn_str.bas

The sample program listings are included at the end of this chapter.

7-2

Sample Program Structure

This chapter includes segments of both the C and BASIC sample
programs. Each program includes the basic functions of initializing the
interface and oscilloscope, capturing the data, and analyzing the data.

In general, both the C and BASIC sample programs typically contain the
following fundamental segments:

Segment Description

main program Defines global variables and constants, specifies include files,
and calls various functions.

initialize Initializes the GPIB or LAN interface and oscilloscope, and sets
up the oscilloscope and the ACQuire subsystem.

acquire_data Digitizes the waveform to capture data.

auto_measurements Performs simple parametric measurements.

transfer_data Brings waveform data and voltage/timing information (the

preamble) into the computer.

The BASIC programming language can be used to set up and transfer data to your
PC. However, because of the limitations of BASIC, it is not the best language to use
when transferring large amounts of data to your PC.

7-3

Sample Programs
Sample C Programs

/*

/*

Sample C Programs

Segments of the sample programs “init.c” and “gen_srq.c” are shown and
described in this chapter.

init.c - Initialization

init. c */

Command Order Example. This program demonstrates the order of commands
suggested for operation of the 8000A oscilloscope via GPIB.

This program initializes the oscilloscope, acquires data, performs
automatic measurements, and transfers and stores the data on the

PC as time/voltage pairs in a comma-separated file format useful

for spreadsheet applications. It assumes a SICL INTERFACE exists

as 'hpib7' and an 8000A oscilloscope at address 7.

It also requires a waveform connected to Channel 1.

See the README file on the demo disk for development and linking information.

*/

#include <stdio.h> /* location of: printf () */

#include <stdlib.h> /* location of: atof(), atoi() */

#include "gpibdecl.h" /* prototypes, global declarations, constants */
void initialize(void); /* initialize the oscilloscope */

void acquire_data(void); /* digitize waveform */

void auto_measurements(void); /* perform built-in automatic measurements */
void transfer_data(void); /* transfers waveform data from oscilloscope to PC */
int convert_data(int, int); /* converts data to time/voltage values */
void store_csv(FILE *, int); /* stores time/voltage pairs to */

/* comma-separated variable file format */

The include statements start the program. The file “gpibdecl.h” includes
prototypes and declarations that are necessary for the Infiniium Oscilloscope
sample programs.

This segment of the sample program defines the functions, in order, that are
used to initialize the oscilloscope, digitize the data, perform measurements,
transfer data from the oscilloscope to the PC, convert the digitized data to time
and voltage pairs, and store the converted data in comma-separated variable
file format.

See the following descriptions of the program segments.

7-4

Sample Programs
Sample C Programs

init.c - Global Definitions and Main Program

/* GLOBALS */

int count;

double xorg,xinc; /* values necessary for conversion of data */
double yorg,yinc;

int Acquired_length;

char data[MAX_LENGTH] ; /* data buffer */
double time_value[MAX LENGTH]; /* time value of data */
double volts[MAX_LENGTH] ; /* voltage value of data */

void main(void)

{

/* initialize interface and device sessions */

/* note: routine found in sicl_IO.c or natl_IO.c */

if(init_IO())
{

/* initialize the oscilloscope and interface and set up SRQ */
initialize();
acquire_data(); /* capture the data */

/* perform automated measurements on acquired data */
auto_measurements() ;

/* transfer waveform data to the PC from oscilloscope */

transfer_data();

close_IO0(); /* close interface and device sessions */
}

} /* end main() */

The init_IO routine initializes the oscilloscope and interface so that the
oscilloscope can capture data and perform measurements on the data. At the
start of the program, global symbols are defined which will be used to store and
convert the digitized data to time and voltage values.

7-5

Sample Programs
Sample C Programs

init.c - Initializing the Oscilloscope

/*

* Function name: initialize

* Parameters: none

* Return value: none

* Description: This routine initializes the oscilloscope for proper

* acquisition of data. The instrument is reset to a known state and the
* interface is cleared. System headers are turned off to allow faster

* throughput and immediate access to the data values requested by queries.
* The oscilloscope time base, channel, and trigger subsystems are then
* configured. Finally, the acquisition subsystem is initialized.

*/

void initialize(void)

{

write_TIO("*RST") ; /* reset oscilloscope - initialize to known state */
write_IO("*CLS"); /* clear status registers and output queue */
write_TO(":SYSTem:HEADer OFF"); /* turn off system headers */

/* initialize time base parameters to center reference, */
/* 2 ms full-scale (200 us/div), and 20 us delay */
write_IO(":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6");

/* initialize Channell 1.6V full-scale (200 mv/div); offset -400mv */
write_IO(":CHANnell:RANGe 1.6;0FFSet -400e-3");

/* initialize trigger info: channell waveform on positive slope at 300mv */
write_IO(":TRIGger:EDGE:SOURce CHANnell;SLOPe POSitive");
write_IO(":TRIGger:LEVel CHANnell,-0.40");

/* initialize acquisition subsystem */
/* Real time acquisition - no averaging; memory depth 1,000,000 */
write_TIO(":ACQuire:MODE RTIMe;AVERage OFF;POINts 1000000") ;

} /* end initialize() */

7-6

b T T N

/

Sample Programs
Sample C Programs

init.c - Acquiring Data

Function name: acquire_data

Parameters: none

Return value: none

Description: This routine acquires data according to the current
instrument settings.

void acquire_data(void)

{
/*

*

* % % 3k X %

}

The root level :DIGitize command is recommended for acquisition of new
data. It will initialize data buffers, acquire new data, and ensure that
acquisition criteria are met before acquisition of data is stopped. The
captured data is then available for measurements, storage, or transfer
to a PC. Note that the display is automatically turned off by the
:DIGitize command and must be turned on to view the captured data.

write_IO(":DIGitize CHANnell");
write_IO(":CHANnell:DISPlay ON"); /* turn on channel 1 display which is */
/* turned off by the :DIGitize command */

/* end acquire_data() */

7-7

* % ok X X X X

~

*

Sample Programs
Sample C Programs

init.c - Making Automatic Measurements

Function name: auto_measurements

Parameters: none

Return value: none

Description: This routine performs automatic measurements of volts
peak-to-peak and frequency on the acquired data. It also demonstrates
two methods of error detection when using automatic measurements.

void auto_measurements(void)

{

b T N . T R N T T N

~

*

*

float frequency, vpp;
unsigned char vpp_str[l6];
unsigned char freq str[l6];
int bytes_read;

Error checking on automatic measurements can be done using one of two methods.
The first method requires that you turn on results in the Measurements
subsystem using the command :MEASure:SEND ON. When this is on, the oscilloscope
will return the measurement and a result indicator. The result flag is zero
if the measurement was successfully completed, otherwise a non-zero value is
returned which indicates why the measurement failed.

The second method simply requires that you check the return value of the
measurement. Any measurement not made successfully will return with the value
+9.999E37. This could indicate that either the measurement was unable to be
performed, or that insufficient waveform data was available to make the
measurement.

METHOD ONE - turn on results to indicate whether the measurement completed
successfully. Note that this requires transmission of extra data from the
oscilloscope.

write_IO(":MEASure:SENDvalid ON") ; /* turn results on */

/* query volts peak-to-peak channel 1 */
write_IO(":MEASure:VPP? CHANnell");

bytes_read = read IO (vpp_str,16L); /* read in value and result flag */

if (vpp_strl[bytes_read-2] != '0"')
printf ("Automated vpp measurement error with result %c\n",
vpp_str[bytes_read-2]);
else
printf ("VPP is %f\n", (float)atof (vpp_str));

7-8

/*

}

Sample Programs
Sample C Programs

write_IO(":MEASure:FREQuency? CHANnell"); /* frequency channel 1 */
bytes_read = read_IO(freqg str,16L); /* read in value and result flag */
if (freqg_str[bytes_read-2] != '0")

printf ("Automated frequency measurement error with result %c\n",
freq str[bytes_read-2]);
else
printf ("Frequency is %f\n", (float)atof (freqg str));

METHOD TWO - perform automated measurements and error checking with
:MEAS:RESULTS OFF

frequency =(float)0;
vpp = (float)oO;

turn off results */
write_TO(":MEASure:SENDvalid OFF") ;

write_IO(":MEASure:FREQuency? CHANnell"); /* frequency channel 1 */
bytes_read = read_IO(freq str,16L); /* read in value and result flag */
frequency = (float) atof(freqg str);

if (frequency > 9.99e37)
printf ("\nFrequency could not be measured.\n");
else
printf ("\nThe frequency of channel 1 is %f Hz.\n", frequency);

write_TO(":MEASure:VPP? CHANnell");
bytes_read = read IO(vpp_str,16L);

vpp = (float) atof (vpp_str);
if (vpp > 9.99e37)

printf ("Peak-to-peak voltage could not be measured.\n");
else

printf ("The voltage peak-to-peak is %f volts.\n", vpp);

/* end auto_measurements () */

7-9

b T T N

Sample Programs
Sample C Programs

init.c - Transferring Data to the PC

Function name: transfer_data

Parameters: none
Return value: none
Description:

waveform data to the PC.

void transfer_data(void)

{

int header_length;
char header_str[8];
FILE *fp;

int time_division=0;

char xinc_str[32],xorg_str[32];
char yinc_str[32],yorg _str[32];

int bytes_read;

write_IO(":WAVeform:SOURce CHANnell");

write_TIO(":WAVeform:FORMat BYTE") ;

write_IO(":WAVeform:XINCrement?") ;

bytes_read = read_IO(xinc_str,32L);
xinc = atof (xinc_str);

write_IO(":WAVeform:XORigin?") ;
bytes_read = read_IO(xorg_str,32L);
xorg = atof (xorg_str);

write_IO(":WAVeform:YINCrement?") ;
bytes_read = read_ IO (yinc_str,32L);
vinc = atof (yinc_str);

write_IO(":WAVeform:YORigin?") ;
bytes_read = read_IO(yorg_str,32L);
yvorg = atof (yorg_str);

write_IO(":WAVeform:DATA?") ;
bytes_read = read_IO(data,lL);
while(datal[0] != '#')

bytes_read = read_IO(data,lL);

This routine transfers the waveform conversion factors and

/* waveform data source channel 1 */
/* setup transfer format */

/* request values to allow
interpretation of raw data */

/* request waveform data */
/* fine the # character */

/* fine the # character */

7-10

}

Sample Programs
Sample C Programs

bytes_read = read_ IO (header_str,1L); /* input byte counter */
header_length = atoi (header_str);

/* read number of points to download */
bytes_read = read IO (header_str, (long)header_length) ;
Acquired_length = atoi (header_str); /* number of bytes */

bytes_read = 0;

fp = fopen("pairs.csv","wb"); /* open file in binary mode - clear file
if already exists */

while((bytes_read + MAX_LENGTH) < Acquired_length)
{
bytes_read += read_IO(data,MAX LENGTH); /* input waveform data */
/* Convert data to voltage and time */
time_division = convert_data(time_division, MAX_ LENGTH) ;
store_csv (fp,MAX_LENGTH) ; /* Store data to disk */
}

/* input last of waveform data */

bytes_read = read_IO(data, (Acquired_length-bytes_read+1l));

/* Convert data to voltage and time */

time_division = convert_data(time_division, (bytes_read-1));
store_csv (fp, (bytes_read-1)); /* Store data to disk */

fclose(fp); /* close file */

/* end transfer_data() */

An example header resembles the following when the information is stripped
off:

#510225

The left most “5” defines the number of digits that follow (10225). The number
“10225” is the number of points in the waveform. The information is stripped
off of the header to get the number of data bytes that need to be read from the
oscilloscope.

7-11

*

* 0% % ok ok 3k X ok S

~

Sample Programs
Sample C Programs

init.c - Converting Waveform Data

Function name: convert_data
Parameters: int time_division which is the index value of the next time

value calculated.
int length number of voltage and time values to calculate.

Return value: int time_division which contains the next time index.
Description: This routine converts the waveform data to time/voltage
information using the values that describe the waveform. These values are
stored in global arrays for use by other routines.

int convert_data(int time_division, int length)

{

int 1i;

for

{

(1 = 0; i < Acquired_length; i++)

/* calculate time info */

time_value[i] =(time_division * xinc) + xorg;
/* calculate volt info */
volts[i] = (datali] * yinc) + yorg;

time_division++;

return time_division;
} /* end convert_data() */

The data values are returned as digitized samples (sometimes called
quantization levels or g-levels). These data values must be converted into
voltage and time values.

Sample Programs
Sample C Programs

init.c - Storing Waveform Time and Voltage Information

/*

* Function name: store_csv

* Parameters: none

* Return value: none

* Description: This routine stores the time and voltage information about
* the waveform as time/voltage pairs in a comma-separated variable file

* format.

*/

void store_csv(FILE *fp, int length)
{

int 1i;
if (fp != NULL)
{
for (i = 0; i < length; i++)
{
/* write time,volt pairs to file */
fprintf(fp, "%e,%$1lf\n",time_valuel[i],volts[i]);
}
}
else

printf ("Unable to open file 'pairs.csv'\n");

} /* end store_csv() */

The time and voltage information of the waveform is stored with the time stored
first, followed by a comma, and the voltage stored second.

7-13

/* gen_srqg.c */

Sample Programs
Sample C Programs

Sample C Program - Generating a Service Request

Segments of the sample C program “gen_srq.c” show how to initialize the
interface and oscilloscope, and generate a service request.

Two include statements start the “gen_srq.c” program. The file “stdio.h” defines
the standard location of the printf routine, and is needed whenever input or
output functions are used. The file “gpibdecl.h” includes necessary prototypes
and declarations for the Infiniium-Series Oscilloscopes sample programs. The
path of these files must specify the disk drive and directory where the “include”
files reside.

* This example program initializes the 8000A oscilloscope, runs an autoscale,
* then generates and responds to a Service Request from the oscilloscope. The
program assumes an 8000A at address 7, an interface card at interface select

* code 7,

*/

and a waveform source attached to channel 1.

#include <stdio.h> /* location of: printf() */
#include "gpibdecl.h"

void
void
void

void

{

initialize(void);
setup_SRQ(void);
create_SRQ(void);

main(void)

if(init_TIO()

{

}

Y/

initialize(
setup_SRQ (
create_SRQ(
close_TIO()

end main()

) /* initialize interface and device sessions */

);/* initialize the oscilloscope and interface */
); /* enable SRQs on oscilloscope and set up SRQ handler */
);/* generate SRQ */

; /* close interface and device sessions */

*/

The routine “init_IO” contains three subroutines that initialize the oscilloscope
and interface, and sets up and generate a service request.

The following segment describes the initialize subroutine.

7-14

*

Function name:
Parameters:
Return value:

* 0% % ok X ok 3k X ok S

~

Sample Programs
Sample C Programs

Initializing the Oscilloscope
The following function is demonstrated in the “gen_srq.c” sample program.
initialize

none
none

Description: This routine initializes the oscilloscope for proper acquisition
of data. The instrument is reset to a known state and the interface is
cleared. System headers are turned off to allow faster throughput and
immediate access to the data values requested by queries. The oscilloscope
performs an autoscale to acquire waveform data.

void initialize(void)

{

write_IO("*RST"); /* reset oscilloscope - initialize to known state */
write_IO("*CLS"); /* clear status registers and output queue */
write_IO(":SYSTem:HEADer OFF"); /* turn off system headers */
write_TIO(":AUToscale"); /* perform autoscale */

} /* end initialize() */

The *RST command is a common command that resets the oscilloscope to a
known default configuration. Using *RST ensures that the oscilloscope is in a
known state before you configure it. It ensures very consistent and repeatable
results. Without *RST, a program may run one time, but it may give different
results in following runs if the oscilloscope is configured differently.

For example, if the trigger mode is normally set to edge, the program may
function properly. But, if someone puts the oscilloscope in the advanced TV
trigger mode from the front panel, the program may read measurement results
that are totally incorrect. So, *RST defaults the oscilloscope to a set
configuration so that the program can proceed from the same state each time.

The *CLS command clears the status registers and the output queue.

AUToscale finds and displays all waveforms that are attached to the
oscilloscope. You should program the oscilloscope’s time base, channel, and
trigger for the specific measurement to be made, as you would do from the front
panel, and use whatever other commands are needed to configure the
oscilloscope for the desired measurement.

7-15

Sample Programs
Sample C Programs

Setting Up a Service Request

The following code segment shows how to generate a service request. The
following function is demonstrated in the “gen_srq.c” sample program.

/*
* Function name: setup_SRQ
* Parameters: none

* Return value: none

* Description: This routine initializes the device to generate Service Requests.
It

* sets the Service Request Enable Register Event Status Bit and the Standard
* Event Status Enable Register to allow SRQs on Command, Execution, Device

* Dependent, or Query errors.

*/

void setup_SRQ(void)

{

/* Enable Service Request Enable Register - Event Status Bit */
write_IO("*SRE 32"); /* Enable Standard Event Status Enable Register */
/* enable Command Error - bit 4 - value 32 */

write_TO("*ESE 32");

} /* end setup_SRQ() */

7-16

Sample Programs
Sample C Programs

Generating a Service Request
The following function is demonstrated in the “gen_srq.c” sample program.

/*

* Function name: create_SRQ

* Parameters: none

* Return value: none

* Description: This routine sends two illegal commands to the oscilloscope which
* will generate an SRQ and will place two error strings in the error queue. The
* oscilloscope ID is requested to allow time for the SRQ to be generated. The ID
* string will contain a leading character which is the response placed in

* the output queue by the interrupted query.

*/

void create_SRQ(void)

{
char buf[256] = { 0 }; // read buffer for id string
int bytes_read = 0;

#ifdef AGILENT
// Setup the Agilent interrupt handler
ionsrg(scope, srg_agilent);
telse
// Setup the National interrup handler
ibnotify(scope, RQS, srg national, NULL);
#endif

// Generate command error - send illegal header
write_IO(":CHANnel:DISPlay OFF");

srqg_asserted = TRUE;
while(srg asserted)

{
// Do nothing until the interrupt has finished

} /* end create_SRQ() */

7-17

Sample Programs
Listings of the Sample Programs

Listings of the Sample Programs

Listings of the C sample programs in this section include:

e gpibdecl.h
® srqgagi.c

¢ learnstr.c
e sicl_IO.c
e natl_IO.c

Listings of the BASIC sample programs in this section include:

e jnit.bas
¢ srqg.bas
e Irn_str.bas

Read the README File Before Using the Sample Programs

Before using the sample programs, be sure to read the README file on the disk that
contains the sample programs.

7-18

Sample Programs
gpibdecl.h Sample Header

gpibdecl.h Sample Header

/* gpibdecl.h */

/* This file includes necessary prototypes and declarations for the
example programs for the Agilent 8000A series */

/* User must indicate which GPIB card (Agilent or National) is being used or
if the LAN interface is being used.
Also, if using a National card, indicate which version of windows
(WIN31 or WIN95) is being used */

#define LAN /* Uncomment if using LAN interface */
#define AGILENT /* Uncomment if using LAN or Agilent interface card */
// #define NATL /* Uncomment if using National interface card */

/* #define WIN31 */ /* For National card ONLY - select windows version */
#define WIN95

#ifdef WINO9S

#include <windows.h> /* include file for Windows 95 */
telse

#include <windecl.h> /* include file for Windows 3.1 */
#endif

#ifdef AGILENT

#include "d:\siclnt\c\sicl.h" /* Change the path for the sicl.h location */
telse

#include "decl-32.h"
#endif

#define CME 32
#define EXE 16
#define DDE 8
#define QYE 4

#define SRQ_BIT 64
#define MAX_LRNSTR 40000
#define MAX_LENGTH 262144
#define MAX_INT 4192

#ifdef AGILENT
#ifdef LAN
#define INTERFACE "lan[130.29.71.82]:hpib7,7"
#else

7-19

Sample Programs
gpibdecl.h Sample Header

#define DEVICE_ADDR "hpib7,7"
#define INTERFACE "hpib7"
#endif
#else
#define INTERFACE "gpibO"

#define board_index 0

#define prim_addr 7

#define second_addr 0

#define timeout 13

#define eoi_mode 1

#define eos_mode 0
#endif

/* GLOBALS */
#ifdef AGILENT

INST bus;

INST scope;
#else

int bus;

int scope;
#endif

#define TRUE 1
#define FALSE 0

extern int srqg asserted;

/* GPIB prototypes */

void init_TIO(void);

void write_IO(char*);

void write_lrnstr(char*, long);
int read_IO(char*, unsigned long) ;
unsigned char read_status();

void close_IO(void);

void gpiberr(void);

#ifdef AGILENT

extern void SICLCALLBACK srqg_agilent(INST);
#else

extern int _ stdcall srg national(int, int, int,
#endif

long,

void*

)

7-20

Sample Programs
srqagi.c Sample Program

srqagi.c Sample Program
/* file: srg.c */

/* This file contains the code to handle Service Requests from an GPIB device */

#include <stdio.h> /* location of printf (), fopen(), and fclose() */
#include "gpibdecl.h"

int srqg _asserted;

*

Function name: srg agilent
Parameters: INST which is id of the open interface.
Return value: none
Description: This routine services the scope when an SRQ is generated.
An error file is opened to receive error data from the scope.

* % ok % X X

~

void SICLCALLBACK srg agilent(INST id)
{

FILE *fp;

unsigned char statusbyte = 0;

int i =0;

int more_errors = 0;

char error_str([64] ={0};

int bytes_read;

srqg_asserted = TRUE;
statusbyte = read_status();

if (statusbyte & SRQ _BIT)
{

fp = fopen("error_list","wb"); /* open error file */

if (fp == NULL)
printf ("Error file could not be opened.\n");

/* read error queue until no more errors */

more_errors = TRUE;

7-21

Sample Programs
srqagi.c Sample Program

while (more_errors)

{
write_IO(":SYSTEM:ERROR? STRING") ;
bytes_read = read_IO(error_str, 64L);

error_str[bytes_read] = '\0’;
printf ("Error string:%s\n", error_str); /* write error msg to std IO */

if (fp != NULL)

fprintf (fp, "Error string:%s\n", error_str); /* write error msg to file */
if (error_str[0] == '0')
{
write_IO("*CLS"); /* Clear event registers and queues,

except output */
more_errors = FALSE;
if(fp != NULL)

fclose(fp);
}
} /* end while (more_errors) */
}
else
{
printf (" SRQ not generated by scope.\n ") ; /* scope did not cause SRQ */
}

srg _asserted = FALSE;

}/* end srg agilent */

7-22

Sample Programs
learnstr.c Sample Program

learnstr.c Sample Program

/* learnstr.c */

/*

* This example program initializes the 8000A oscilloscope, runs autoscale to
* acquire a waveform, queries for the learnstring, and stores the learnstring
* to disk. It then allows the user to change the setup, then restores the

* original learnstring. It assumes that a waveform is attached to the

* oscilloscope.

*/

#include <stdio.h> /* location of: printf(), fopen(), fclose(),

fwrite(),getchar */

#include "gpibdecl.h"

void initialize(void);
void store_learnstring(void);
void change_setup(void);
void get_learnstring(void);
void main(void)
{
if(init_IO()) /* initialize device and interface */
{ /* Note: routine found in sicl_IO.c or natl_IO.c */

}
} o/

/* initialize the oscilloscope and interface, and set up SRQ */
initialize();

store_learnstring(); /* request learnstring and store */
change_setup(); /* request user to change setup */
get_learnstring(); /* restore learnstring */

close_IO0(); /* close device and interface sessions */

/* Note: routine found in sicl_TIO.c or natl_IO.c */

end main */

7-23

*

EE I T T T N

~

Sample Programs
learnstr.c Sample Program

Function name: initialize

Parameters: none

Return value: none

Description: This routine initializes the oscilloscope for proper
acquisition of data. The instrument is reset to a known state and the
interface is cleared. System headers are turned off to allow faster
throughput and immediate access to the data values requested by queries.
Autoscale is performed to acquire a waveform. The waveform is then
digitized, and the channel display is turned on following the acquisition.

void initialize(void)

{

write_IO("*RST"); /* reset oscilloscope - initialize to known state */
write_IO("*CLS"); /* clear status registers and output queue */
write_IO(":SYSTem:HEADer ON") ; /* turn on system headers */

/* initialize Timebase parameters to center reference, 2 ms
full-scale (200 us/div), and 20 us delay */
write_IO(":TIMebase:REFerence CENTer;RANGe 5e-3;POSition 20e-6");

/* initialize Channell 1.6v full-scale (200 mv/div) ;
offset -400mv */
write_TO(":CHANnell:RANGe 1.6;0FFSet -400e-3");

/* initialize trigger info: channell waveform on positive slope
at 300mv */

write_IO(":TRIGger:EDGE:SOURce CHANnell;SLOPe POSitive");

write_IO(":TRIGger:LEVel CHANnell,-0.40");

/* initialize acquisition subsystem */
/* Real time acquisition - no averaging; record length 4096 */
write_IO(":ACQuire:MODE RTIMe;AVERage OFF;POINts 4096");

} /* end initialize() */

7-24

Sample Programs
learnstr.c Sample Program

/*

* Function name: store_learnstring

* Parameters: none

* Return value: none

* Description: This routine requests the system setup known as a

* learnstring. The learnstring is read from the oscilloscope and stored in a file
* called Learn2.

*/

void store_learnstring(void)

{
FILE *fp;
unsigned char setup[MAX_LRNSTR]={0};
int actualcnt = 0;

write_IO(":SYSTem:SETup?") ; /* request learnstring */
actualcnt = read_IO(setup, MAX_LRNSTR) ;

fp = fopen("learn2", "wb");

if (fp != NULL)

{
fwrite(setup,sizeof (unsigned char), (int)actualcnt, fp);
printf ("Learn string stored in file Learn2\n");

fclose(fp);
}

else
printf ("Error in file open\n");

}/* end store_learnstring */

*

Function name: change_setup

Parameters: none

Return value: none

Description: This routine places the oscilloscope into local mode to allow the
customer to change the system setup.

b . T N

~

void change_setup(void)

{
printf ("Please adjust setup and press ENTER to continue.\n");
getchar () ;

} /* end change_setup */

7-25

Sample Programs
learnstr.c Sample Program

*

Function name: get_learnstring

Parameters: none

Return value: none

Description: This routine retrieves the system setup known as a
learnstring from a disk file called Learn2. It then restores

the system setup to the oscilloscope.

* % X X o

~

void get_learnstring(void)

{

FILE *fp;
unsigned char setup[MAX_LRNSTR];
unsigned long count = 0;

fp = fopen("learn2",'"rb");

if (fp != NULL)

{
count = fread(setup,sizeof (unsigned char),MAX_LRNSTR, fp) ;
fclose(fp);

}

write_lrnstr (setup, count) ; /* send learnstring */

write_TO(":RUN") ;

}/* end get_learnstring */

7-26

Sample Programs
sicl_l0.c Sample Program

sicl_IO.c Sample Program

/* sicl_TIO.c */
#include <stdio.h> /* location of: printf() */
#include <string.h> /* location of: strlen() */

#include "gpibdecl.h"

/* This file contains IO and initialization routines for the SICL libraries. */

/*

* Function name: init_IO

* Parameters: none

* Return value: int indicating success or failure of initialization.

* Description: This routine initializes the SICL environment. It sets up
* error handling, opens both an interface and device session, sets timeout
* wvalues, clears the interface by pulsing IFC, and clears the instrument

* by performing a Selected Device Clear.

*

int init_TO()
{

ionerror (I_ERROR_EXIT) ; /* set-up interface error handling */

/* open interface session for verifying SRQ line */
bus = iopen(INTERFACE);
if (bus == 0)
{
printf ("Bus session invalid\n");
return FALSE;

}
itimeout (bus, 20000); /* set bus timeout to 20 sec */
iclear(bus); /* clear the interface - pulse IFC */

7-27

Sample Programs
sicl_l0.c Sample Program

#ifdef LAN
scope = bus;
#else
scope = iopen(DEVICE_ADDR) ; /* open the scope device session */
if (scope == 0)
{
printf("Scope session invalid\n");

return FALSE;

itimeout (scope, 20000); /* set device timeout to 20 sec */
iclear(scope); /* perform Selected Device Clear on oscilloscope */
#endif

return TRUE;
} /* end init_IO */

7-28

Sample Programs
sicl_l0.c Sample Program

/*

* Function name: write_IO

* Parameters: char *buffer which is a pointer to the character string to be
* output; unsigned long length which is the length of the string to be output
* Return value: none

* Description: This routine outputs strings to the oscilloscope device session
* using the unformatted I/O SICL commands.

*/

void write_IO(void *buffer)
{
unsigned long actualcnt;
unsigned long length;
int send_end = 1;
length = strlen(buffer);
iwrite(scope, buffer, length, send_end, &actualcnt);

} /* end write_IO */

/*

* Function name: write_lrnstr

* Parameters: char *buffer which is a pointer to the character string to be
* output; long length which is the length of the string to be output

* Return value: none

* Description: This routine outputs a learnstring to the oscilloscope device
* gession using the unformatted I/O SICL commands.

*/

void write_lrnstr(void *buffer, long length)

{
unsigned long actualcnt;
int send_end = 1;

iwrite(scope, buffer, (unsigned long) length,
send_end, &actualcnt);

} /* end write_lrnstr() */

7-29

EE R T N
*

~

Sample Programs
sicl_l0.c Sample Program

Function name: read_IO

Parameters: char *buffer which is a pointer to the character string to be
input; unsigned long length which indicates the max length of the string to
be input

Return value: integer which indicates the actual number of bytes read

Description: This routine inputs strings from the oscilloscope device session

using SICL commands.

int read_IO(void *buffer,unsigned long length)

{

-

X % X X X X

int reason;
unsigned long actualcnt;

iread(scope,buffer, length, &reason, &actualcnt) ;

return((int) actualcnt);

Function name: check_SRQ

Parameters: none

Return value: integer indicating if bus SRQ line was asserted
Description: This routine checks for the status of SRQ on the bus and
returns a value to indicate the status.

int check_SRQ(void)

{

int srg asserted;

/* check for SRQ line status */
igpibbusstatus (bus, I_GPIB_BUS_SRQ, &srqg _asserted);

return(srqg_asserted);

} /* end check_SRQ() */

7-30

Sample Programs
sicl_l0.c Sample Program

/*

* Function name: read_status

* Parameters: none

* Return value: unsigned char indicating the value of status byte

* Description: This routine reads the oscilloscope status byte and returns
* the status.

*/

unsigned char read_status(void)

{

unsigned char statusbyte;

/* Always read the status byte from instrument */

/* NOTE: ireadstb uses serial poll to read status byte - this
should clear bit 6 to allow another SRQ. */

ireadstb(scope, &statusbyte);
return(statusbyte);

} /* end read_status() */

*

Function name: close_IO

Parameters: none

Return value: none

Description: This routine closes device and interface sessions for the
SICL environment and calls the routine _siclcleanup which de-allocates
resources used by the SICL environment.

% % ok X ok X

~

void close_IO(void)

{

iclose(scope); /* close device session */
iclose(bus); /* close interface session */
_siclcleanup(); /* required for 16-bit applications */

} /* end close_SICL() */

7-31

Sample Programs
natl_l0.c Sample Program

natl_IO.c Sample Program

/* natl_TIO.c */

#include <stdio.h> /* location of: printf() */
#include <string.h> /* location of: strlen() */
#include "gpibdecl.h"

/* This file contains IO and initialization routines for the NI488.2 commands. */
/*

* Function name: gpiberr
* Parameters: char* - string describing error
* Return value: none

* Description: This routine outputs error descriptions to an error file.
*/

void gpiberr(char *buffer)

{

printf ("Error string: %s\n",buffer);

} /* end gpiberr () */

*

Function name: init_IO

Parameters: none

Return value: none

Description: This routine initializes the NI environment. It sets up error
handling, opens both an interface and device session, sets timeout values
clears the interface by pulsing IFC, and clears the instrument by performing
a Selected Device Clear.

% o ok X X X X

~

void init_IO(void)
{
bus = ibfind(INTERFACE) ; /* open and initialize GPIB board */
if(ibsta & ERR)
gpiberr ("ibfind error");

ibconfig(bus, IbcAUTOPOLL, 0); /* turn off autopolling */
ibsic(bus); /* clear interface - pulse IFC */
if(ibsta & ERR)
{
gpiberr("ibsic error");
}

7-32

* % ok ko ok

Sample Programs
natl_l0.c Sample Program

/* open device session */

scope = ibdev(board_index, prim_addr, second_addr, timeout,
eoi_mode, eos_mode);

if(ibsta & ERR)

{
gpiberr("ibdev error");
}
ibclr(scope); /* clear the device(scope) */

if(ibsta & ERR)
{
gpiberr ("ibclr error");

}

/* end init_IO */

Function name: write_IO
Parameters: void *buffer which is a pointer to the character string
to be output
Return value: none
Description: This routine outputs strings to the oscilloscope device session.

void write_IO(void *buffer)

long length;
length = strlen(buffer);

ibwrt (scope, buffer, (long) length);
if (ibsta & ERR)
{

gpiberr("ibwrt error");

}

} /* end write_IO() */

7-33

Sample Programs
natl_l0.c Sample Program

/*

* Function name: write_lrnstr

* Parameters: void *buffer which is a pointer to the character string to

* Dbe output; length which is the length of the string to be output

* Return value: none

* Description: This routine outputs a learnstring to the oscilloscope device
* gession.

*/

void write_lrnstr(void *buffer, long length)

{

ibwrt (scope, buffer, (long) length);
if (ibsta & ERR)

{
gpiberr("ibwrt error");

}
} /* end write_lrnstr() */
/*
* Function name: read_TIO
* Parameters: char *buffer which is a pointer to the character string to be
* input; unsigned long length which indicates the max length of the string
* to be input
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs strings from the oscilloscope device session.
*/

int read_IO(void *buffer,unsigned long length)
{
ibrd(scope, buffer, (long)length);

return(ibcntl);

} /* end read_IO() */

7-34

Sample Programs
natl_l0.c Sample Program

/*

* Function name: check_SRQ

* Parameters: none

* Return value: integer indicating if bus SRQ line was asserted

* Description: This routine checks for the status of SRQ on the bus and
* returns a value to indicate the status.

*/

int check_SRQ(void)
{

int srg asserted;
short control_lines = 0;

iblines(bus, &control_lines);
if(control_lines & BusSRQ)
srq_asserted = TRUE;
else
srq_asserted = FALSE;

return(srg asserted);

} /* end check_ _SRQ() */

/*

* Function name: read_status

* Parameters: none

* Return value: wunsigned char indicating the value of status byte

* Description: This routine reads the oscilloscope status byte and returns
* the status.

*/

unsigned char read_status(void)

{ unsigned char statusbyte;
/* Always read the status byte from instrument */
ibrsp(scope, &statusbyte);

return(statusbyte);

} /* end read_status() */

7-35

Sample Programs
natl_l0.c Sample Program

/*
* Function name: close_IO
* Parameters: none

* Return value: none
* Description: This routine closes device session.

void close_IO(void)
{

ibonl (scope,0); /* close device session */

} /* end close_IO() */

7-36

Sample Programs
init.bas Sample Program

init.bas Sample Program

The BASIC programming language can be used to set up and transfer data to your
PC. However, because of the limitations of BASIC, it is not the best language to use
when transferring large amounts of data to your PC.

10 1file: init

20 !

30 !

40 ! This program demonstrates the order of commands suggested for
operation of

50 ! the 8000A oscilloscope via GPIB. This program initializes the
oscilloscope, acquires

60 ! data, performs automatic measurements, and transfers and stores the
data on the

70 ! PC as time/voltage pairs in a comma-separated file format useful for
spreadsheet

80 ! applications. It assumes an interface card at interface select code 7, an
90 ! 8000A oscilloscope at address 7, and the 8000A cal waveform connected
to Channel 1.

100 !

110 !

120 !

130 COM /Io/@Scope,@Path,Interface

140 COM /Raw_data/ INTEGER Data(4095)

150 COM /Converted_data/ REAL Time (4095),Volts (4095)
160 COM /Variables/ REAL Xinc,Xorg,Yinc,Yorg
170 COM /Variables/ INTEGER Record_length
180 !

190 !

200 CALL Initialize

210 CALL Acquire_data

220 CALL Auto_msmts

230 CALL Transfer_data

240 CALL Convert_data

250 CALL Store_csv

260 CALL Close

270 END

280 !

7-37

Sample Programs
init.has Sample Program

rrrnn

BEGIN SUBPROGRAMS

| T T A A A A A O A |

350 !

360 !

370 ! Subprogram name: Initialize

380 ! Parameters: none

390 ! Return value: none

400 ! Description: This routine initializes the interface and the

oscilloscope. The instrument

410 is reset to a known state and the interface is cleared. System headers

420 ! are turned off to allow faster throughput and immediate access to the

430 ! data values requested by the queries. The oscilloscope time base,

440 ! channel, and trigger subsystems are then configured. Finally, the

450 ! acquisition subsystem is initialized.

460 !

470 !

480 SUB Initialize

490 COM /Io/@Scope,@Path,Interface

500 COM /Variables/ REAL Xinc,Xorg,Yinc, Yorg

510 COM /Variables/ INTEGER Record_length

520 Interface=7

530 ASSIGN @Scope TO 707

540 RESET Interface

550 CLEAR @Scope

560 OUTPUT @Scope; "*RST"

570 OUTPUT @Scope; "*CLS"

580 OUTPUT @Scope; ":5YSTem:HEADer OFF"

590 'Tnitialize Timebase: center reference, 2 ms full-scale (200 us/div),
20 us delay

600 OUTPUT @Scope; " :TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6"

610 ! ITnitialize Channell: 1.6V full-scale (200mv/div), -415mv offset

620 OUTPUT @Scope; " :CHANnell:RANGe 1.6;0FFSet -415e-3"

630 !Tnitialize Trigger: Edge trigger, channell source at -415mv

640 OUTPUT @Scope; " :TRIGger :EDGE: SOURce CHANnell; SLOPe POSitive"

650 OUTPUT @Scope; " :TRIGger:LEVel CHANnell,-0.415"

660 ! Initialize acquisition subsystem

665 ! Real time acquisition, Averaging off, memory depth 4096

670 OUTPUT @Scope; ":ACQuire:MODE RTIMe; AVERage OFF;POINts 4096"

680 Record_length=4096

690 SUBEND

7-38

Sample Programs
init.has Sample Program

700 !
710 !
720

rrrnd

750 ! Subprogram name: Acquire_data

760 ! Parameters: none

770 ! Return value: none

780 ! Description: This routine acquires data according to the current
instrument

790 ! setting. It uses the root level :DIGitize command.
This command

800 ! is recommended for acquisition of new data because
it will initialize

810 ! the data buffers, acquire new data, and ensure that
acquisition

820 ! criteria are met before acquisition of data is
stopped. The captured

830 ! data is then available for measurements, storage,
or transfer to a

840 ! PC. Note that the display is automatically turned
off by the :DIGitize

850 ! command and must be turned on to view the captured data.
860 !

870 !

880 SUB Acquire_data

890 COM /Io/@Scope,@Path, Interface

900 OUTPUT @Scope; " :DIGitize CHANnell"

910 OUTPUT @Scope; " :CHANnell:DISPlay ON"

920 SUBEND

930 !

940 !

950

rrrnd

980 ! Subprogram name: Auto_msmts
990 ! Parameters: none
1000 ! Return value: none

1010 ! Description: This routine performs automatic measurements of
volts peak-to-peak

1020 ! and frequency on the acquired data. It also
demonstrates two methods

1030 ! of error detection when using automatic measurements.

7-39

Sample Programs
init.has Sample Program

1040 !

1050 !

1060 SUB Auto_msmts

1070 COM /Io/@Scope,@Path, Interface

1080 REAL Freq, Vpp

1090 DIM Vpp_str$[64]

1100 DIM Freqg str$[64]

1110 Bytes_read=0

1120 !

1130 ! Error checking on automatic measurements can be done using one of
two methods.

1140 ! The first method requires that you turn on results in the Measurement
subsystem

1150 ! using the command ":MEASure:SEND ON". When this is on, the
oscilloscope will return the

1160 ! measurement and a result indicator. The result flag is zero if
the measurement

1170 ! was successfully completed, otherwise a non-zero value is returned
which indicates

1180 ! why the measurement failed. See the Programmer's Manual for
descriptions of result

1190 ! indicators. The second method simply requires that you check the
return value of

1200 ! the measurement. Any measurement not made successfully will return
with the value

1210 ! +9.999e37. This could indicate that either the measurement was
unable to be

1220 ! performed or that insufficient waveform data was available to make
the measurement.

1230 !

1240 ! METHOD ONE

1250 !

1260 OUTPUT @Scope; ":MEASure:SENDvalid ON" lturn on results
1270 OUTPUT @Scope; " :MEASure:VPP? CHANnell" 'Query volts peak-to-peak
1280 ENTER @Scope;Vpp_str$

1290 Bytes_read=LEN (Vpp_str$) 'Find length of string
1300 CLEAR SCREEN

1310 IF Vpp_str$[Bytes_read;1]="0" THEN !'Check result value
1320 PRINT

1330 PRINT "VPP is ";VAL (Vpp_str$[1l,Bytes_read-11])

1340 PRINT

1350 ELSE

1360 PRINT

1370 PRINT "Automated vpp measurement error with result

", Vpp_str$[Bytes_read; 1]

1380 PRINT

1390 END IF

1400 !

7-40

1410 !
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510

Sample Programs
init.has Sample Program

OUTPUT @Scope; " :MEASure:FREQuency? CHANnell" 'Query frequency
ENTER @Scope;Freq str$
Bytes_read=LEN (Freqg str$) 'Find string length
IF Freq str$[Bytes_read;1]="0" THEN IDetermine result value
PRINT
PRINT "Frequency 1is ";VAL(Freq str$[1l,Bytes_read-1])
PRINT
ELSE
PRINT

PRINT "Automated frequency measurement error with result

";Freq_str$[Bytes_read;1]

1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800

PRINT
END IF

METHOD TWO

OUTPUT @Scope; ":MEASure:SENDvalid OFF" lturn off results
OUTPUT @Scope; " :MEASure:VPP? CHANnell" 'Query volts peak-to-peak
ENTER @Scope; Vpp
IF Vpp<9.99E+37 THEN
PRINT
PRINT "VPP is ";Vpp
PRINT
ELSE
PRINT
PRINT "Automated vpp measurement error ";Vpp
PRINT
END IF
OUTPUT @Scope; " :MEASure:FREQuency? CHANnell"
ENTER @Scope;Freq
IF Freg<9.99E+37 THEN
PRINT
PRINT "Frequency is ";Freq
PRINT
ELSE
PRINT
PRINT "Automated frequency measurement error";Freqg
PRINT
END IF

1810 SUBEND

1820 !
1830 !
1840

rrrnd

7-41

Sample Programs
init.has Sample Program

1860
1870
1880
1890

1900 ! Description:

factors to
1910 !
1920 !
1930 !

Subprogram name:
Parameters: none
Return value: none

Transfer_ data

This routine transfers the waveform data and conversion

to PC.

1940 SUB Transfer_ data
1950 COM /Io/@Scope,@Path, Interface

1960 COM /Raw_data/ INTEGER Data(4095)

1970 COM /Converted_data/ REAL Time (4095),Volts (4095)
REAL Xinc, Xorg,Yinc, Yorg
INTEGER Record_length

1980 COM /Variables/
1990 COM /Variables/
2000 !

2010 OUTPUT @Scope; ":

2020 OUTPUT @Scope; "
2030 !
2040 OUTPUT @Scope; "

WAVeform:
:WAVeform:

:WAVeform:

2050 ENTER @Scope;Xinc

2060 OUTPUT @Scope; "

:WAVeform:

2070 ENTER @Scope;Xorg

2100 OUTPUT @Scope; "

:WAVeform:

2110 ENTER @Scope;Yinc

2120 OUTPUT @Scope; "

:WAVeform:

2130 ENTER @Scope;Yorg

define waveform data source and format
SOURce CHANnell"
FORMat WORD"
request values needed to convert raw data to real
XINCrement?"

XORigin?"
YINCrement?"

YORigin?"

2160 !

2170 ! request data

2180 OUTPUT @Scope; " :WAVeform:DATA?"

2190 ENTER @Scope USING "#,1A";First_chrs$ lignore leading #

2200 ENTER @Scope USING "#,1D";Header_length linput number of bytes in

header value

2210 ENTER @Scope USING "#, "&VALS (Header_length) &"D";Record_length 'Record

length in bytes

2220 Record_length=Record_length/2 IRecord length in words

2230 ENTER @Scope USING "#,W";Data(*)

2240 ENTER @Scope USING "#,A";Term$ lEnter terminating character

2250 !

2260 SUBEND

2270 !

2280 !

2290
rtrrnd
rrrrrrrrrnd

2300 !

2310 !

2320 ! Subprogram name: Convert_data

7-42

Sample Programs
init.has Sample Program

2330 ! Parameters: none

2340 ! Return value: none

2350 ! Description: This routine converts the waveform data to time/
voltage information

2360 ! using the values Xinc, Xorg, Yinc, and Yorg used to describe
2370 ! the raw waveform data.

2380 !

2390 !

2400 SUB Convert_data

2410 COM /Io/@Scope,@Path,Interface

2420 COM /Raw_data/ INTEGER Data (4095)

2430 COM /Converted_data/ REAL Time (4095),Volts (4095)
2440 COM /Variables/ REAL Xinc, Xorg,Yinc, Yorg

2450 COM /Variables/ INTEGER Record_length

2460 !

2470 FOR I=0 TO Record_length-1

2480 Time (I)=(I-*Xinc)+Xorg

2490 Volts (I)=(Data(I)*Yinc)+Yorg

2500 NEXT I
2510 SUBEND
2520 !

2530 !

2540

rrrnd

Subprogram name: Store_csv

Parameters: none

Return value: none

2600 ! Description: This routine stores the time and voltage information
about the waveform

2610 ! as time/voltage pairs in a comma-separated variable
file format.

2620 !

2630 !

2640 SUB Store_csv

2650 COM /Io/@Scope,@Path, Interface

2660 COM /Converted_data/ REAL Time (4095),Volts(4095)
2670 COM /Variables/ REAL Xinc,Xorg,Yinc, Yorg

2680 COM /Variables/ INTEGER Record_length

2690 ICreate a file to store pairs in

2700 ON ERROR GOTO Cont

2710 PURGE "Pairs.csv"

2720 Cont: OFF ERROR

2730 CREATE "Pairs.csv",Max_length

2740 ASSIGN @Path TO "Pairs.csv";FORMAT ON

2750 'Output data to file

7-43

Sample Programs
init.has Sample Program

2760 FOR I=0 TO Record_length-1

2770 OUTPUT @Path;Time(I),Volts(I)
2780 NEXT T

2790 SUBEND

2800 !

2810 !

rrrnd

]
! Subprogram name: Close
! Parameters: none
2870 ! Return value: none
! Description: This routine closes the IO paths.
|
]

2910 SUB Close
2920 COM /Io/@Scope,@Path, Interface

2940 RESET Interface
2950 ASSIGN @Path TO *
2960 SUBEND

7-44

Sample Programs
srg.bas Sample Program

10
20
30
40

srq.bas Sample Program

The BASIC programming language can be used to set up and transfer data to your
PC. However, because of the limitations of BASIC, it is not the best language to use
when transferring large amounts of data to your PC.

!File: srg.bas

1

! This program demonstrates how to set up and check Service Requests from
! the oscilloscope. It assumes an interface select code of 7 with an

oscilloscope at

50
60
70
80
90
100
110
120
130
140
150
160
170

address 7. It also assumes a waveform is connected to the oscilloscope.
1
!
COM /Io/@Scope, Interface
COM /Variables/Temp
CALL Initialize
CALL Setup_srqg
ON INTR Interface CALL Srg_handler !Set up routine to handle interrupt
ENABLE INTR Interface;2 'Enable SRQ Interrupt for Interface
CALL Create_srqg
CALL Close

END
!

7-45

Sample Programs
srq.bas Sample Program

180
rtrrnd
190 !

200 ! BEGIN SUBPROGRAMS

210 !

220
rred
230 !

240 !

250 ! Subprogram name: Initialize

260 ! Parameters: none

270 ! Return value: none

280 ! Description: This routine initializes the interface and the
oscilloscope.

290 ! The instrument is reset to a known state and the interface is
300 ! cleared. System headers are turned off to allow
faster throughput

310 ! and immediate access to the data values requested by the queries.
320 !

330 !

340 SUB Initialize

350 COM /Io/@Scope, Interface

360 ASSIGN @Scope TO 707

370 Interface=7

380 RESET Interface

390 CLEAR @Scope

400 OUTPUT @Scope; "*RST"

410 OUTPUT @Scope; "*CLS"

420 OUTPUT @Scope; ":SYSTem:HEADer OFF"

430 OUTPUT @Scope; ":AUToscale"

440 SUBEND

450 !

460 !

470 !

7-46

480

Sample Programs
srq.bas Sample Program

rrrnd

490
500
510
520
530

Subprogram name: Setup_srg
Parameters: none
Return value: none
! Description: This routine sets up the oscilloscope to generate

Service Requests.

540
550
560
570
580
590
600
610

It sets the Service Request Enable Register Event Status Bit
and the Standard Event Status Enable REgister to allow SRQs on
! Command or Query errors.
1
!
SUB Setup_srqg
COM /Io/@Scope, Interface
OUTPUT @Scope; "*SRE 32" !Enable Service Request Enable Registers

- Event Status bit

620
630
640
650
660
670
680
690
700

1

! Enable Standard Event Status Enable Register:
! enable bit 5 - Command Error - value 32
1

bit 2 - Query Error - value 4
OUTPUT @Scope; "*ESE 36"

SUBEND
1
1
1

7-47

Sample Programs
srq.bas Sample Program

710
rrrnd
I

720 !

730 !

740 ! Subprogram name: Create_srqg

750 ! Parameters: none

760 ! Return value: none

770 ! Description: This routine will send an illegal command to the

oscilloscope to

780 ! show how to detect and handle an SRQ. A gquery 1is sent to
790 ! the oscilloscope which is then followed by another
command causing

800 ! a query interrupt error. An illegal command header is then
810 ! sent to demonstrate how to handle multiple errors in
the error dqueue.

820 !

830 !

840 !

850 SUB Create_srqg

860 COM /Io/@Scope, Interface

870 DIM Buf$[256]

880 OUTPUT @Scope; " :CHANnel2:DISPlay?"

890 OUTPUT @Scope; " :CHANnel2:DISPlay OFF" Isend query interrupt
900 OUTPUT @Scope; ":CHANnel:DISPlay OFF" Isend illegal header
910 ! Do some stuff to allow time for SRQ to be recognized
920 !

930 OUTPUT @Scope; "*IDN?" 'Request IDN to verify communication

940 ENTER @Scope;Bufs$ INOTE: There is a leading zero to this
guery response

950 PRINT 'which represents the response to the
interrupted query above

960 PRINT Buf$

970 PRINT

980 SUBEND

990 !

1000 !

1010 !

7-48

1020

Sample Programs
srq.bas Sample Program

rrrnd

1090

Subprogram name: Srqg handler
Parameters: none
Return value: none
! Description: This routine verifies the status of the SRQ line. It
checks
! the status byte of the oscilloscope to determine if

the oscilloscope caused the

1100

! SRQ. Note that using a SPOLL to read the status byte

of the oscilloscope

1110

! clears the SRQ and allows another to be generated.

The error queue

1120

! is read until all errors have been cleared. All event

registers and

1130

! queues, except the output queue, are cleared before

control is returned

1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410

! to the main program.
1
1
!
SUB Srg handler
COM /Io/@Scope, Interface
DIM Error_strS$[64]
INTEGER Srqg asserted,More_errors
Status_byte=SPOLL (@Scope)
IF BIT(Status_byte, 6) THEN
More_errors=1
WHILE More_errors
OUTPUT @Scope; ":SYSTem: ERROR? STRING"
ENTER @Scope;Error_str$
PRINT
PRINT Error_str$
IF Error_str$[1l,1]1="0" THEN
OUTPUT @Scope; "*CLS"
More_errors=0
END IF
END WHILE
ELSE
PRINT
PRINT "Scope did not cause SRQ"
PRINT
END IF
ENABLE INTR Interface;2 !re-enable SRQ
SUBEND

7-49

Sample Programs
srq.bas Sample Program

rrrnd

Subprogram name: Close

Parameters: none

Return value: none

Description: This routine resets the interface.

1530 SUB Close
1540 COM /Io/@Scope, Interface

1560 RESET Interface
1570 SUBEND

1580 !
1590 !
1600

7-50

Sample Programs
Irn_str.bas Sample Program

Im_str.bas Sample Program

The BASIC programming language can be used to set up and transfer data to your
PC. However, because of the limitations of BASIC, it is not the best language to use
when transferring large amounts of data to your PC.

10 'FILE: lrn_str.bas

20 !

30 I'THIS PROGRAM WILL INITIALIZE THE OSCILLOSCOPE, AUTOSCALE, AND DIGITIZE
THE WAVEFORM

40 I'TNFORMATION. IT WILL THEN QUERY THE INSTRUMENT FOR THE LEARNSTRING AND WILL
50 !SAVE THE INFORMATION TO A FILE. THE PROGRAM WILL THEN PROMPT YOU TO CHANGE
60 !'THE SETUP THEN RESTORE THE ORIGINAL LEARNSTRING CONFIGURATION. IT ASSUMES
70 AN 8000A at ADDRESS 7, GPIB INTERFACE at 7, AND THE CAL waveform ATTACHED TO
80 !CHANNEL 1.

90 !

100 !

110 COM /Io/@Scope,@Path,Interface
120 COM /Variables/Max_length

130 CALL Initialize

140 CALL Store_lrnstr

150 CALL Change_setup

160 CALL Get_lrnstr

170 CALL Close

180 END

190 !

200 !

rrrnd

230 ! BEGIN SUBROUTINES

| T T T T Y A O O

! Subprogram name: Initialize

! Parameters: none

! Return value: none

! Description: This routine initializes the path descriptions and
resets the

300 ! interface and the oscilloscope. It performs an autoscale
on the waveform,

7-51

310
320
330

Sample Programs
Irn_str.bas Sample Program

! acquires the data on channel 1, and turns on the display.
! NOTE: This routine also turns on system headers. This allows the
! string ":SYSTEM:SETUP " to be returned with the

learnstring so the

340 ! return string is in the proper format.
350 !

360 SUB Initialize

370 COM /Io/@Scope,@Path, Interface

380 COM /Variables/Max_length

390 Max_length=40000

400 ASSIGN @Scope TO 707

410 Interface=7

420 RESET Interface

430 CLEAR @Scope

440 OUTPUT @Scope; "*RST"

450 OUTPUT @Scope; "*CLS"

460 OUTPUT @Scope; ":SYSTem:HEADer ON"

470 OUTPUT @Scope; ":AUToscale"

480 SUBEND

490 !

500 !

510
rrrnd
[

520 !

530 !

540 ! Subprogram name: Store_lrnstr

550 ! Parameters: none

560 ! Return value: none

570 ! Description: This routine creates a file in which to store the
learnstring

580 ! configuration (Filename:Lrn_strg). It requests the learnstring
590 ! and inputs the configuration to the PC. Finally, it stores the
600 ! configuration to the file.

610 !

620 SUB Store_lrnstr

630 COM /Io/@Scope, @Path, Interface

640 COM /Variables/Max_length

650 ON ERROR GOTO Cont

660 PURGE "Lrn_strg"

670 Cont: OFF ERROR

680 CREATE BDAT "Lrn_strg",1,40000

690 DIM Setup$[40000]

700 ASSIGN @Path TO "Lrn_strg"

710 OUTPUT @Scope; ":SYSTem: SETup?"

720 ENTER @Scope USING "-K";Setup$

730 OUTPUT @Path,1;Setup$

740 CLEAR SCREEN

7-52

Sample Programs
Irn_str.bas Sample Program

PRINT "Learn string stored in file: Lrn_strg"
SUBEND

rrr

Subprogram name: Change_setup

Parameters: none

Return value: none

Description: This subprogram requests that the user change the
oscilloscope setup, then press a key to continue.

SUB Change_setup
COM /Io/@Scope, @Path, Interface

PRINT
PRINT "Please adjust setup and press Continue to resume."
PAUSE

SUBEND

rrrn

! Subprogram name: Get_lrnstr

! Parameters: none

! Return value: none

! Description: This subprogram loads a learnstring from the
! file "Lrn_strg" to the oscilloscope.

1
1

SUB Get_lrnstr
COM /Io/@Scope, @Path, Interface
COM /Variables/Max_length
DIM Setup$[40000]
ENTER @Path,l;Setups
OUTPUT @Scope USING "#,-K";Setup$
OUTPUT @Scope; " :RUN"

SUBEND

1

1

7-53

Sample Programs
Irn_str.bas Sample Program

1160
rtrrnd
rrrnt

1170 !

1180 !

1190 ! Subprogram name: Close

1200 ! Parameters: none

1210 ! Return value: none

1220 ! Description: This routine resets the interface, and closes all I/
O paths

1230 !

1240 !

1250 !

1260 SUB Close
1270 COM /Io/@Scope,@Path,Interface

1290 RESET Interface
1300 ASSIGN @Path TO *
1310 SUBEND

1320 !

7-54

Acquire Commands

Acquire Commands

The ACQuire subsystem commands set up conditions for executing a
:DIGitize root level command to acquire waveform data. The commands
in this subsystem select the type of data, the number of averages, and
the number of data points.

These ACQuire commands and queries are implemented in the Infiniium
Oscilloscopes:

e AVERage

e AVERage:COUNt

e COMPlete

e COMPlete:STATe

e [NTerpolate

e MODE

e POINts (memory depth)
e POINts:AUTO

e SEGMented:COUNt

¢ SEGMented:INDex

e SEGMented:TTAGs

e SRATe (sampling rate)
e SRATe:AUTO

8-2

Acquire Commands
AVERage

Command

Example

Query

Returned Format

Example

AVERage

:ACQuire:AVERage {{ON|1} | {OFF|0}}

The :ACQuire:AVERage command enables or disables averaging. When ON, the
oscilloscope acquires multiple data values for each time bucket, and averages
them. When OFF, averaging is disabled. To set the number of averages, use
the :ACQuire:AVERage:COUNt command described next.

Averaging is not available in PDETect mode.
The :MTESt:AVERage command performs the same function as this command.

This example turns averaging on.

10 OUTPUT 707;":ACQUIRE:AVERAGE ON"
20 END

:ACQuire:AVERage-?

The :ACQuire:AVERage? query returns the current setting for averaging.

[:ACQuire:AVERAGE] {1|0}<NL>

This example places the current settings for averaging into the string variable,
Setting$, then prints the contents of the variable to the computer's screen.

10 DIM Settings$[50]!Dimension variable
20 OUTPUT 707; " :ACQUIRE:AVERAGE?"

30 ENTER 707;Setting$

40 PRINT Setting$

50 END

8-3

Acquire Commands
AVERage:COUNt

Command

<count_value>

Example

Query

Returned Format

<value>

Example

AVERage:COUNt

:ACQuire:AVERage:COUNt <count_value>

The :ACQuire:AVERage:COUNt command sets the number of averages for the
waveforms. In the AVERage mode, the :ACQuire:AVERage:COUNt command
specifies the number of data values to be averaged for each time bucket before
the acquisition is considered complete for that time bucket.

The :MTESt:AVERage:COUNt command performs the same function as this
command.

An integer, 2 to 4096, specifying the number of data values to be averaged.

This example specifies that 16 data values must be averaged for each time
bucket to be considered complete. The number of time buckets that must be
complete for the acquisition to be considered complete is specified by the
:ACQuire:COMPlete command.

10 OUTPUT 707; " :ACQUIRE:AVERAGE:COUNT 16"
20 END

:ACQuire: AVERAGE: COUNt?

The :ACQuire:AVERage:COUNt? query returns the currently selected count
value.

[:ACQuire:AVERage:COUNt] <value><NL>

An integer, 2 to 4096, specifying the number of data values to be averaged.

This example checks the currently selected count value and places that value
in the string variable, Result$. The program then prints the contents of the
variable to the computer's screen.

10 OuTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707; " :ACQUIRE:AVERAGE:COUNT?"
30 ENTER 707;Result

40 PRINT Result

50 END

8-4

Acquire Commands
COMPlete

Command

<percent>

Example

COMPlete

:ACQuire:COMPlete <percent>

The :ACQuire:COMPIlete command specifies how many of the data point storage
bins (time buckets) in the waveform record must contain a waveform sample
before a measurement will be made. For example, if the command
:ACQuire:COMPIete 60 has been sent, 60% of the storage bins in the waveform
record must contain a waveform data sample before a measurement is made.

e [f:ACQuire:AVERage is set to OFF, the oscilloscope only needs one value
per time bucket for that time bucket to be considered full.

e [f:ACQuire:AVERage is set to ON, each time bucket must have 7 hits for it
to be considered full, where 7 is the value set by :ACQuire:AVERage:COUNL.

Due to the nature of real time acquisition, 100% of the waveform record bins
are filled after each trigger event, and all of the previous data in the record is
replaced by new data when :ACQuire:AVERage is off. Hence, the complete
mode really has no effect, and the behavior of the oscilloscope is the same as
when the completion criteria is set to 100% (this is the same as in PDETect
mode). When :ACQuire:AVERage is on, all of the previous data in the record
is replaced by new data.

The range of the :ACQuire:COMPlete command is 0 to 100 and indicates the
percentage of time buckets that must be full before the acquisition is considered
complete. If the complete value is set to 100%, all time buckets must contain
data for the acquisition to be considered complete. If the complete value is set
to 0, then one acquisition cycle will take place. Completion is set by default
setup or *RST to 90%. Autoscale changes it to 100%.

Aninteger, 0 to 100, representing the percentage of storage bins (time buckets)
that must be full before an acquisition is considered complete.

This example sets the completion criteria for the next acquisition to 90%.

10 OUTPUT 707;":ACQUIRE:COMPLETE 90"
20 END

8-5

Query

Returned Format

<percent>

Example

Acquire Commands
COMPlete

:ACQuire:COMPlete?

The :ACQuire:COMPlete? query returns the completion criteria.

[:ACQuire:COMPlete] <percent><NL>

Aninteger, 0 to 100, representing the percentage of time buckets that must be
full before an acquisition is considered complete.

This example reads the completion criteria and places the result in the variable,
Percent. Then, it prints the content of the variable to the computer's screen.

10
20
30
40
50

OUTPUT 707;" :SYSTEM:HEADER OFF”
OUTPUT 707;" :ACQUIRE:COMPLETE?"
ENTER 707;Percent

PRINT Percent

END

8-6

Acquire Commands
COMPlete:STATe

Command

Query

ON

OFF

COMPlete:STATe

:ACQuire:COMPlete:STATe {{ON|1} | OFF|0}}

The :ACQuire:COMPlete:STATe command specifies the state of the
:ACQuire:COMPlete mode. This mode is used to make a tradeoff between how
often equivalent time waveforms are measured, and how much new data is
included in the waveform record when a measurement is made. This command
has no effect when the oscilloscope is in real time mode because the entire
record is filled on every trigger. However, in equivalent time mode, as few as 0
new data points will be placed in the waveform record as the result of any given
trigger event. You set the acquire mode of the oscilloscope by using the
:ACQuire:MODE command.

Use :ACQuire:COMPlete:STATe when DIGitize is Not Performing

The :ACQuire:COMPlete:STATe command is used only when the oscilloscope is
operating in equivalent time mode and a digitize operation is not being performed.
The :DIGitize command temporarily overrides the setting of this mode and forces it
to ON.

Turns the COMPlete mode on. Then you can specify the completion percent.

When off, the oscilloscope makes measurements on waveforms after each
acquisition cycle, regardless of how complete they are. The waveform record
is not cleared after each measurement. Instead, previous data points will be
replaced by new samples as they are acquired.

:ACQuire:COMPlete:STATe?

The :ACQuire:COMPlete? query returns the state of the :ACQuire:COMPlete
mode.

8-7

Acquire Commands
INTerpolate

Command

Query

Returned Format

INTerpolate

:ACQuire:INTerpolate {{ON|1} | {OFF|0}}

The :ACQuire:INTerpolate command turns the sin(x)/x interpolation filter on
or off when the oscilloscope is in one of the real time sampling modes.

:ACQuire:INTerpolate?

The :ACQuire:INTerpolate? query returns the current state of the sin(x)/x
interpolation filter control.

[:ACQuire:INTerpolate] {1|0}<NL>

8-8

Acquire Commands
MODE

Command

RTIMe
ETIMe or

REPetitive

PDETect

HRESolution

MODE

:ACQuire:MODE {RTIMe|{ETIMe|REPetitive} |PDETect |
HRESolution | SEGMented}

The :ACQuire:MODE command sets the acquisition mode of the oscilloscope.
Sampling mode can be Equivalent Time (Repetitive), Real Time Normal, Real
Time Peak Detect, Segmented, or Real Time High Resolution.

In Real Time Normal mode, the complete data record is acquired on a single
trigger event.

In Equivalent Time (Repetitive) mode, the data record is acquired over multiple
trigger events.

In Real Time Peak Detect mode, the oscilloscope acquires all of the waveform
data points during one trigger event. The data is acquired at the fastest sample
rate of the oscilloscope regardless of the horizontal scale setting. The sampling
rate control then shows the storage rate into the channel memory rather than
the sampling rate. The storage rate determines the number of data points per
data region. From each data region, four sample points are chosen to be
displayed for each time column. The four sample points chosen from each data
region are:

¢ the minimum voltage value sample

¢ the maximum voltage value sample

e arandomly selected sample

e an equally spaced sample

The number of samples per data region is calculated using the equation:

Sampling Rate

Number of Samples =
Storage Rate

The remainder of the samples are not used for display purposes.

In Real Time High Resolution mode, the oscilloscope acquires all the waveform
data points during one trigger event and averages them thus reducing noise and
improving voltage resolution. The data is acquired at the fastest sample rate of
the oscilloscope regardless of the horizontal scale setting. The sampling rate
control then shows the storage rate into the channel memory rather than the
sampling rate. The number of samples that are averaged together per data
region is calculated using the equation

Sampling Rate

Number of Samples =
Storage Rate

8-9

SEGMented

Example

Query

Returned Format

Example

Acquire Commands
MODE

This number determines how many samples are averaged together to form the
16-bit samples that are stored into the channel memories.

In this sampling mode you can view waveform events that are separated by long
periods of time without capturing waveform events that are not of interest to
you.

This example sets the acquisition mode to Real Time Normal.

10 OUTPUT 707; " :ACQUIRE:MODE RTIME"
20 END

:ACQuire:MODE?

The :ACQuire:MODE? query returns the current acquisition sampling mode.

[:ACQuire:MODE] {RTIMe | {ETIMe | REPetitive} | PDETect |
HRESolution | SEGMented}<NL>

This example places the current acquisition mode in the string variable, Mode$,
then prints the contents of the variable to the computer's screen.

10 DIM Mode$[50] !Dimension variable
20 OouTpPUT 707; " :ACQUIRE:MODE?"

30 ENTER 707;Mode$

40 PRINT ModeS$

50 END

8-10

Acquire Commands
POINts

Command

<points_value>

POINts

:ACQuire:POINts {AUTO | <points_value>}

The :ACQuire:POINts command sets the requested memory depth for an
acquisition. Before you download data from the oscilloscope to your computer,
always query the points value with the :WAVeform:POINts? query or
:-WAVeform:PREamble? query to determine the actual number of acquired
points.

You can set the points value to AUTO, which allows Infiniium to select the
optimum memory depth and display update rate.
An integer representing the memory depth.

The range of points available for a channel depends on the oscilloscope settings
of Sampling Mode, Sampling Rate, and Trigger Mode.

8-11

Maximum Sampling
Rate for the 54833A/D
Models

Table 8-1

Acquire Commands
POINts

The maximum sampling rate of the oscilloscope depends on the channels that
you are using. If you are using only one channel of channels 1 and 2 and only
one channel of channels 3 and 4 then the oscilloscope is at a maximum sampling
rate of 4 GSa/s. This mode is called Half Channel Mode. Otherwise, the
oscilloscope has a maximum sampling rate of 2 GSa/s. This mode is called Full
Channel Mode. The following tables show the range of point values for the
different oscilloscope modes and model numbers.

54833A/D Points Value Ranges for Auto and Triggered Sweep Trigger Modes

Memory Option

Standard
Half Channel Mode
Full Channel Mode

040 Option
Half Channel Mode
Full Channel Mode

080 Option
Half Channel Mode
Full Channel Mode

160 Option
Half Channel Mode
Full Channel Mode

320 Option
Half Channel Mode
Full Channel Mode

640 Option
Half Channel Mode
Full Channel Mode

Maximum Real Time Sampling Mode

Normal Peak Detect High Resolution Averaging
16 to 512500 16 to 512500 16 to 512500 16 to 512500
16 to 256250 16 to 256250 16 to 256250 16 to 256250
16 to 4100000 16 to 4100000 16 to 4100000 16 to 2097152
16 to 2050000 16 to 2050000 16 to 2050000 16 to 1048576
16 to 8200000 16 to 8200000 16 to 8200000 16 to 2097152
16 to 4100000 16 to 4100000 16 to 4100000 16 to 1048576
16 to 16400000 16 to 16400000 16 to 16400000 2097152

16 to 8200000 16 to 8200000 16 to 8200000 1048576

16 to 32800000 16 to32800000 16 to32800000 2097152

16 to 16400000 16 to 16400000 16 to 16400000 1048576

16 to 65600000 16 to 65600000 16 to65600000 2097152

16 to 32800000 16 to 32800000 16 to 32800000 1048576

Table 8-2

Acquire Commands
POINts

54833A/D Models Points Value Ranges for Single Sweep Trigger Modes

Memory Option

Standard
Half Channel Mode
Full Channel Mode

040 Option
Half Channel Mode
Full Channel Mode

080 Option
Half Channel Mode
Full Channel Mode

160 Option
Half Channel Mode
Full Channel Mode

320 Option
Half Channel Mode
Full Channel Mode

640 Option
Half Channel Mode
Full Channel Mode

Normal

16 to 1025000
16 to 512500

16 to 8200000
16 to 4100000

16 to 16400000
16 to 8200000

16 to 32800000
16 to 16400000

16 to 65600000
16 to 32800000

16 to 131200000
16 to 65600000

Maximum Real Time Sampling Mode

Peak Detect

16 to 1025000
16 to 512500

16 to 8200000
16 to 4100000

16 to 16400000
16 to 8200000

16 to 32800000
16 to 16400000

16 to 65600000
16 to 32800000

16 to 131200000
16 to 65600000

High Resolution

16 to 1025000
16 to 512500

16 to 8200000
16 to 4100000

16 to 16400000
16 to 8200000

16 to 32800000
16 to 16400000

16 to 65600000
16 to 32800000

16 to 131200000
16 to 65600000

Averaging

16 to 512500
16 to 256250

16 to 2097152
16 to 1048576

16 to 2097152
16 to 1048576

2097152
1048576

2097152
1048576

2097152
1048576

8-13

Acquire Commands

POINts
Below Maximum Sampling rates of less than 2 GSa/s for Full Channel Mode and less than
Sampling Rate for 4 GSa/s in Half Channel Mode have point values that are shown in the following

54833A/D Models tables.

Table 8-3

54833A/D Models Points Value Ranges for Auto and Triggered Sweep Trigger Modes

Below Maximum Real Time Sampling Mode

Memory Option Normal Peak Detect High Resolution Averaging
Standard

Half Channel Mode 16 to 512500 16 to 64062 16 to 256250 512500

Full Channel Mode 16 to 256500 16 to 64062 16 to 128125 256250
040 Option

Half Channel Mode 16 to 4100000 16 to 512500 16 to 2050000 2097152

Full Channel Mode 16 to 2050000 16 to 512500 16 to 1025000 1048576
080 Option

Half Channel Mode 16 to 8200000 16 to 1025000 16 to 4100000 2097152

Full Channel Mode 16 to 4100000 16 to 1025000 16 to 2050000 1048576
160 Option

Half Channel Mode 16 to 16400000 16 to 2050000 16 to 8200000 2097152

Full Channel Mode 16 to 8200000 16 to 2050000 16 to 4100000 1048576
320 Option

Half Channel Mode 16 to 32800000 16 to 4100000 16 to 16400000 2097152

Full Channel Mode 16 to 16400000 16 to 4100000 16 to 8200000 1048576
640 Option

Half Channel Mode 16 to 65600000 16 to 8200000 16 to 32800000 2097152

Full Channel Mode 16 to 32800000 16 to 8200000 16 to 16400000 1048576

Table 8-4

Acquire Commands
POINts

54833A/D Models Points Value Ranges for Single Sweep Trigger Mode

Memory Option

Standard
Half Channel Mode
Full Channel Mode

040 Option
Half Channel Mode
Full Channel Mode

080 Option
Half Channel Mode
Full Channel Mode

160 Option
Half Channel Mode
Full Channel Mode

320 Option
Half Channel Mode
Full Channel Mode

640 Option
Half Channel Mode
Full Channel Mode

Below Maximum Real Time Sampling Mode

Normal

16 to 1025000
16 to 1025000

16 to 4100000
16 to 4100000

16 to 8200000
16 to 8200000

16 to 16400000
16 to 16400000

16 to 32800000
16 to 3280000

16 to 65600000
16 to 65600000

Peak Detect

16 to 256250
16 to 256250

16 to 1025000
16 to 1025000

16 to 2050000
16 to 2050000

16 to 4100000
16 to 4100000

16 to 8200000
16 to 8200000

16 to 16400000
16 to 16400000

High Resolution

16 to 512500
16 to 512500

16 to 2050000
16 to 2050000

16 to 4100000
16 to 4100000

16 to 8200000
16 to 8200000

16 to 16400000
16 to 16400000

16 to 32800000
16 to 32800000

Averaging

512500
256250

2097152
1048576

2097152
1048576

2097152
1048576

2097152
1048576

2097152
1048576

8-15

Acquire Commands
POINts

The following tables show the points range for all other models of Infiniium
oscilloscopes.

Maximum Sampling
Rate for all other

Models

Table 8-5

All Other Models Points Value Ranges for Auto and Triggered Sweep Trigger Modes

Maximum Real Time Sampling Mode

Memory Option Normal Peak Detect High Resolution Averaging
Standard
Half Channel Mode 16t0 512500 16 to 512500 16 to 512500 16 to 512500
Full Channel Mode 16 to 256250 16 to 256250 16 to 256250 16 to 256250
040 Option
Half Channel Mode 16 to 4100000 16 to 4100000 16 to 4100000 2097152
Full Channel Mode 16 to 2050000 16 to 2050000 16 to 2050000 1048576
080 Option
Half Channel Mode 16 to 8200000 16 to 8200000 16 to 8200000 2097152
Full Channel Mode 16 to 4100000 16 to 4100000 16 to 4100000 1048576
160 Option
Half Channel Mode 16 to 16400000 16 to 16400000 16 to 16400000 2097152
Full Channel Mode 16 to 8200000 16 to 8200000 16 to 8200000 1048576
320 Option
Half Channel Mode 16 to 32800000 16 to32800000 16 to32800000 2097152
Full Channel Mode 16 to 16400000 16 to 16400000 16 to 16400000 1048576
640 Option
Half Channel Mode 16 to 65600000 16 to 65600000 16 to65600000 2097152
Full Channel Mode 16 to 32800000 16 to 32800000 16 to 32800000 1048576

8-16

Table 8-6

Acquire Commands
POINts

All Other Models Points Value Ranges for Single Sweep Trigger Modes

Memory Option

Standard
Half Channel Mode
Full Channel Mode

040 Option
Half Channel Mode
Full Channel Mode

080 Option
Half Channel Mode
Full Channel Mode

160 Option
Half Channel Mode
Full Channel Mode

320 Option
Half Channel Mode
Full Channel Mode

640 Option
Half Channel Mode
Full Channel Mode

Normal

16 to 1025000
16 to 512500

16 to 8200000
16 to 4100000

16 to 16400000
16 to 8200000

16 to 32800000
16 to 16400000

16 to 65600000
16 to 32800000

16 to 131200000 16 to 131200000

16 to 65600000

Maximum Real Time Sampling Mode

Peak Detect

16 to 1025000
16 to 512500

16 to 8200000
16 to 4100000

16 to 16400000
16 to 8200000

16 to 32800000
16 to 16400000

16 to 65600000
16 to 32800000

16 to 65600000

High Resolution

16 to 1025000
16 to 512500

16 to 8200000
16 to 4100000

16 to 16400000
16 to 8200000

16 to 32800000
16 to 16400000

16 to 65600000
16 to 32800000

16 to 131200000
16 to 65600000

Averaging

16 to 512500
16 to 256250

2097152
1048576

2097152
1048576

2097152
1048576

2097152
1048576

2097152
1048576

8-17

Acquire Commands
POINts

Below Maximum Sampling rates of less than 2 GSa/s for Full Channel Mode and less than
Sampling Rate for All 4 GSa/s in Half Channel Mode have point values that are shown in the following
Other Models tables.

Table 8-7

All Other Models Points Value Ranges for Auto and Triggered Sweep Trigger Modes

Below Maximum Real Time Sampling Mode

Memory Option Normal Peak Detect High Resolution Averaging
Standard

Half Channel Mode 16 to 512500 16 to 64062 16 to 256250 512500

Full Channel Mode 16 to 256500 16 to 64062 16 to 128125 256250
040 Option

Half Channel Mode 16 to 4100000 16 to 512500 16 to 2050000 2097152

Full Channel Mode 16 to 2050000 16 to 512500 16 to 1025000 1048576
080 Option

Half Channel Mode 16 to 8200000 16 to 1025000 16 to 4100000 2097152

Full Channel Mode 16 to 4100000 16 to 1025000 16 to 2050000 1048576
160 Option

Half Channel Mode 16 to 16400000 16 to 2050000 16 to 8200000 2097152

Full Channel Mode 16 to 8200000 16 to 2050000 16 to 4100000 1048576
320 Option

Half Channel Mode 16 to 32800000 16 to 4100000 16 to 16400000 2097152

Full Channel Mode 16 to 16400000 16 to 4100000 16 to 8200000 1048576
640 Option

Half Channel Mode 16 to 65600000 16 to 8200000 16 to 32800000 2097152

Full Channel Mode 16 to 32800000 16 to 8200000 16 to 16400000 1048576

8-18

Table 8-8

Acquire Commands
POINts

All Other Models Points Value Ranges for Single Sweep Trigger Mode

Memory Option

Standard
Half Channel Mode
Full Channel Mode

040 Option
Half Channel Mode
Full Channel Mode

080 Option
Half Channel Mode
Full Channel Mode

160 Option
Half Channel Mode
Full Channel Mode

320 Option
Half Channel Mode
Full Channel Mode

640 Option
Half Channel Mode
Full Channel Mode

Equivalent Time
Sampling Mode for All
Models

Below Maximum Real Time Sampling Mode

Normal Peak Detect High Resolution Averaging
16 to 1025000 16 to 256250 16 to 512500 512500
16 to 1025000 16 to 256250 16 to 512500 256250
16 to 4100000 16 to 1025000 16 to 2050000 2097152
16 to 4100000 16 to 1025000 16 to 2050000 1048576
16 to 8200000 16 to 2050000 16 to 4100000 2097152
16 to 8200000 16 to 2050000 16 to 4100000 1048576
16 to 16400000 16 to 4100000 16 to 8200000 2097152
16 to 16400000 16 to 4100000 16 to 8200000 1048576
16 to 32800000 16 to 8200000 16 to 16400000 2097152
16 to 3280000 16 to 8200000 16 to 16400000 1048576
16 to 65600000 16 to 16400000 16 to 32800000 2097152
16 to 65600000 16 to 16400000 16 to 32800000 1048576

Equivalent Time Sampling mode takes the oscilloscope out of half channel mode
and the memory depth range is 16 points to 32768 points.

Interaction between :ACQuire:SRATe and :ACQuire:POINts

If you assign a sample rate value with :ACQuire:SRATe or a points value using
:ACQuire:POINts the following interactions will occur. “Manual” means you are
setting a non-AUTO value for SRATe or POINts.

SRATe POINts Result

AUTO Manual POINts value takes precedence (sample rate is limited)
Manual AUTO SRATe value takes precedence (memory depth is limited)
Manual Manual SRATe value takes precedence (memory depth is limited)

Example

This example sets the memory depth to 500 points.

10 OUTPUT 707;":ACQUIRE:POINTS 500"
20 END

8-19

Query

Returned Format

Example

See Also

Acquire Commands
POINts

:ACQuire:POINts?

The

:ACQuire:POINts? query returns the value of the memory depth control.

[:ACQuire:POINts] <points_value><NL>

This example checks the current setting for memory depth and places the result
in the variable, Length. Then the program prints the contents of the variable
to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707; " :ACQUIRE:POINTS?"
30 ENTER 707;Length

40 PRINT Length

50 END

‘WAVeform:DATA?

8-20

Acquire Commands
POINts:AUTO

Command

Example

Query

Returned Format

Example

See Also

POINts:AUTO

:ACQuire:POINts:AUTO {{ON | 1} |{OFF | 0}}

The :ACQuire:POINts:AUTO command enables (automatic) or disables
(manual) the automatic memory depth selection control. When enabled,
Infiniium chooses a memory depth that optimizes the amount of waveform data
and the display update rate. When disabled, you can select the amount of
memory using the :ACQuire:POINts command.

This example sets the automatic memory depth control to off.

10 OUTPUT 707;":ACQUIRE:POINTS:AUTO OFF"
20 END

:ACQuire:POINts:AUTO?

The :ACQuire:POINts:AUTO? query returns the automatic memory depth
control state.

[:ACQuire:POINts:AUTO] {1 | O0}<NL>

This example checks the current setting for automatic memory depth control
and places the result in the variable, State. Then the program prints the
contents of the variable to the computer's screen.

10 OuTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707;":ACQUIRE:POINTS:AUTO?"
30 ENTER 707;State

40 PRINT State

50 END

:WAVeform:DATA?

8-21

Acquire Commands
SEGMented:COUNt

Command

<#sements>

Example

Query

Returned Format

Example

SEGMented:COUNt

:ACQuire:SEGMented:COUNt <#segments>

The :ACQuire:SEGMented: COUNt command sets the number of segments to
acquire in the segmented memory mode.

An integer representing the number of segments to acquire.

This example sets the segmented memory count control to 1000.

10 OUTPUT 707;":ACQUIRE:SEGMented:COUNt 1000"
20 END

:ACQuire: SEGMented: COUNtL?

The :ACQuire:SEGMented:COUNT? query returns the number of segments
control value.

[:ACQuire:SEGMented:COUNt] <#segments><NL>

This example checks the current setting for segmented memory count control
and places the result in the variable, Segments. Then the program prints the
contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707; " :ACQUIRE:SEGMents:COUNt?"
30 ENTER 707;Segments

40 PRINT Segments

50 END

8-22

Acquire Commands
SEGMented:INDex

Command

<index#>

Example

Query

Returned Format

Example

SEGMented:INDex

:ACQuire:SEGMented: INDex <index#>

The :ACQuire:SEGMented:INDex command sets the index number for the
segment that you want to display on screen in the segmented memory mode.
If an index value larger than the total number of acquired segments is sent, an
error occurs indicating that the data is out of range and the segment index is
set to the maximum segment number.

An integer representing the index number of the segment that you want to
display.

This example sets the segmented memory index number control to 1000.

10 OUTPUT 707;":ACQUIRE:SEGMented:INDex 1000"
20 END

:ACQuire:SEGMented: INDex?

The :ACQuire:SEGMented:INDex? query returns the segmented memory index
number control value.

[:ACQuire:SEGMented:INDex] <index#><NL>

This example checks the current setting for segmented memory index number
control and places the result in the variable, Index. Then the program prints
the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707; " :ACQUIRE:SEGMents:INDex?"
30 ENTER 707;Index

40 PRINT Index

50 END

8-23

Acquire Commands
SEGMented:TTAGs

Command

Example

Query

Returned Format

Example

SEGMented: TTAGs

:ACQuire:SEGMented:TTAGs {{ON | 1} | {OFF | 0}}

The :ACQuire:SEGMented:TTAGs command turns the time tags feature on or
off for the segmented memory sampling mode.

This example turns the time tags on for segmented memory.

10 OUTPUT 707;":ACQUIRE:SEGMented:TTAGs ON"
20 END

:ACQuire:SEGMented: TTAGS?

The :ACQuire:SEGMented:TTAGs? query returns the segmented memory time
tags control value.

[:ACQuire:SEGMented:TTAGs] {1 | 0}<NL>

This example checks the current setting for segmented memory time tags
control and places the result in the variable, timetags. Then the program prints
the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”

20 OUTPUT 707; " :ACQUIRE:SEGMents:TTAGs?"
30 ENTER 707;timetags

40 PRINT timetags

50 END

8-24

Acquire Commands
SRATe (Sample RATe)

Command

Table 8-9

SRATe (Sample RATe)

:ACQuire:SRATe {AUTO | MAX | <rate>}

The :ACQuire:SRATe command sets the acquisition sampling rate for real time
and peak detect sampling modes. If the oscilloscope is in the equivalent time
sampling mode, the SRATe command has no effect on the sampling rate.
However, if you change the sampling mode to one of the real time sampling
modes the control will show the new value.

AUTO The AUTO rate allows the oscilloscope to select a sample rate that best

accommodates the selected memory depth and sweep speed.

MAX The MAXrate enablesthe oscilloscope to select maximum available sample rate.

<rate> A real number representing the sample rate. You can send any value, but the

value is rounded to the next fastest sample rate.

Interaction between :ACQuire:SRATe and :ACQuire:POINts

If you assign a sample rate value with :ACQuire:SRATe or a points value using
:ACQuire:POINts the following interactions will occur. “Manual” means you are
setting a non-AUTO value for SRATe or POINts.

SRATe POINts Result

AUTO Manual POINts value takes precedence (sample rate is limited)
Manual AUTO SRATe value takes precedence (memory depth is limited)
Manual Manual SRATe value takes precedence (memory depth is limited)

Available Sample Rate Values (in Sa/s)

25 4 5 0 20 25 40 50 100 200 250 400
25k 4k 5k 10k 20k 25k 40k 50k 100k 200k 250k 400k
25M 4M 5M 10M 20M 25M 40M 50M 100M 125M 200M 250M
46

05 1 2
500 1k 2k
500k 1M M
500M 1G 2G
Example

This example sets the sample rate to 250 MSa/s.

10 OUTPUT 707;":ACQUIRE:SRATE 250E+6"
20 END

8-25

Acquire Commands
SRATe (Sample RATe)

Query :ACQuire:SRATe?

The :ACQuire:SRATe? query returns the current acquisition sample rate.

Returned Format [:ACQuire:SRATe] {AUTO | <rate>}<NL>

Example This example places the current sample rate in the string variable, Sample$,
then prints the contents of the variable to the computer's screen.

10 DIM Sample$[50]!Dimension variable
20 OUTPUT 707;":ACQUIRE:SRATE?"

30 ENTER 707;Sample$

40 PRINT Sample$

50 END

8-26

Acquire Commands
SRATe:AUTO

Command

Example

Query

Returned Format

Example

SRATe:AUTO

:ACQuire:SRATe:AUTO {{ON | 1} | {OFF | 0}}

The :ACQuire:SRATe:AUTO command enables or disables the automatic
sampling rate selection control for real time and peak detect sampling modes.
If the oscilloscope is in the equivalent time sampling mode, the AUTO command
has no effect. However, if you change the sampling mode to real time or peak
detect sampling the control will show the new value.

This example changes the sampling rate to manual.

10 OUTPUT 707;":ACQUIRE:SRATE:AUTO OFF"
20 END

:ACQuire:SRATe:AUTO?

The :ACQuire:SRATe:AUTO? query returns the current acquisition sample rate.

[:ACQuire:SRATe:AUTO] {1 | O0}<NL>

This example places the current sample rate in the variable, Sample, then prints
the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707; " :ACQUIRE:SRATE:AUTO?"
30 ENTER 707;Sample

40 PRINT Sample

50 END

8-27

Acquire Commands
SRATe:AUTO

8-28

Bus Commands

Bus Commands

| The BUS commands only apply to the MSO Oscilloscopes. |

The :BUS modes and commands described in this chapter include:

e B1:.TYPE
e BIT<M>
e BITS

e CLEar

e CLOCk
e DISPlay
e LABel

e READout

9-2

Bus Commands
B1:TYPE

Command

<protocol>

Example

Query

Return format

B1:TYPE

:BUS:B1:TYPE <protocol>

This BUS command only applies to oscilloscopes with the serial data
analysis option installed.

The :BUS:B1:TYPE command sets the type of protocol being analyzed.

{CAN | DVI | FIBRechannel | FLEXray | GEN8B10B | GENeric | IIC |
INFiniband | MOST | PClexpress | SAS | SATA | SPI | XAUI | MIPI}

This example sets the protocol type to FLEXray.

10 Output 707;”BUS:Bl:TYPE FLEXRAY”
20 END

:BUS:Bl1:TYPE?

The :BUS:B1:TYPE? query returns the name of the protocol being used.

[:BUS:B1l:TYPE] <protocol><NL>

9-3

Bus Commands

BIT<M>
BIT<M>
Command :BUS<N>:BIT<M> {ON | OFF | 1 | 0}
| The BUS commands only apply to the MSO Oscilloscopes. |
The :BUS<N>:BIT<M> command includes or excludes the selected bit as part
of the definition for the selected bus. If the parameter is a 1 (ON) then the bit
is included in the definition. If the parameter is a 0 (OFF) then the bit is
excluded from the definition. The digital subsystem must be enabled for this
command will work. See ENABIle command in the root subsystem.
<M> An integer, 0-15.
<N> An integer, 1-4.
Example This example includes bit 1 as part of the bus 1 definition.
10 Output 707;”ENABLE DIGITAL”
20 Output 707;”BUS1:BIT1 ON”
30 END
Query : BUS<N>: BIT<M>"?

Return format

The :BUS<N>:BIT<M>? query returns the value indicating whether the
specified bit is included or excluded from the specified bus definition.

[:BUS<N>:BIT<M>] {1 | 0}<NL>

9-4

Bus Commands
BITS

Command

<N>

<channel list>

Example

Query

Return format

BITS

:BUS<N>:BITS <channel_list>,{ON | OFF| 1 | 0}

| The BUS commands only apply to the MSO Oscilloscopes. |

The :BUS<N>:BITS command includes or excludes the selected bits in the
channel list in the definition of the selected bus. If the parameter isa 1 (ON)
then the bits in the channel list are included as part of the selected bus
definition. If the parameter is a 0 (OFF) then the bits in the channel list are
excluded from the definition of the selected bus. The digital subsystem must
be enabled for this command will work. See ENABIle command in the root
subsystem.

An integer, 1- 4.
The channel range is from 0 to 15 in the following format.

(@1,5,7,9) channels 1,5, 7, and 9 are turned on.
(@1:15) channels 1 through 15 are turned on.
(@1:5,8,14) channels 1 through 5, channel 8, and channel 14 are turned on.

| The parenthesizes are part of the expression and are necessary.

This example includes bits 1, 2,4, 5, 6,7, 8, and 9 as part of the bus 1 definition.

10 Output 707; "ENABLE DIGITAL”
20 Output 707;”BUS1:BITS (@1,2,4:9),0N”
30 END

:BUS<N>:BITS?

The :BUS<N>:BITS? query returns the definition for the specified bus.

[:BUS<N>:BITS] <channel list>, {1 | 0}<NL>

9-5

Bus Commands
CLEar

CLEar

Command BUS<N>:CLEar

| The BUS commands only apply to the MSO Oscilloscopes.

The :BUS<N>:CLEar command excludes all of the digital channels from the
selected bus definition.

<N> Aninteger, 1-4.

Example This example excludes all the digital channels from the bus 1 definition.
10 Output 707;”BUS1:CLEAR”
20 END

9-6

Bus Commands
CLOCk

Command
<M>
<N>
<0O>

Example

Query

Return format

CLOCk

:BUS<N>:CLOCk {CHANnel<O> | DIGital<M> | NONE}

| The BUS commands only apply to the MSO Oscilloscopes. |

The :BUS<N>:CLOCk command sets the digital or analog channel used as the
clock for decoding the bus values.

An integer, 0-15.
An integer, 1-4.
An integer, 1-4.

This example sets the clock to channel 1 for bus 1.

10 Output 707;”ENABLE DIGITAL”
20 Output 707;”"BUS1:CLOCK CHANNEL1”
30 END

:BUS<N>:CLOCK?

The :BUS<N>:CLOCKk query returns the channel being used for the specified
bus.

[:BUS<N>:CLOCk] {CHANnel<O> | DIGital<M> | NONE}<NL>

9-7

Bus Commands
CLOCk:SLOPe

Command

Example

Query

Return format

CLOCKk:SLOPe

:BUS<N>:SLOPe {RISing | FALLing | EITHer}

| The BUS commands only apply to the MSO Oscilloscopes. |

The :BUS<N>:CLOCKk:SLOPe command sets the clock edge used for decoding
the bus values.

<0> Aninteger, 1-4.

This example sets the clock edge to falling for bus 1.

10 Output 707; "ENABLE DIGITAL”
20 Output 707;”BUS1:CLOCK:SLOPE FALLING”
30 END

:BUS<N>:CLOCK: SLOPe?

The :BUS<N>:CLOCKk:SLOPe query returns the clock edge being used for the
specified bus.

[:BUS<N>:CLOCk] {RISing | FALLing | EITHer}<NL>

9-8

Bus Commands
DISPlay

Command

<N>

Example

Query

Returned Format

DISPlay

:BUS<N>[:DISPlay] {ON | OFF | 1 | 0}

| The BUS commands only apply to the MSO Oscilloscopes.

The :BUS<N>:DISPlay command enables or disables the view of the selected
bus. The digital subsystem must be enabled before this command will work.
See the ENABIle command in the root subsystem.

An integer, 1- 4.

This example enables the viewing of bus 1.

10 Output 707; :ENABLE DIGITAL”
20 Output 707;"BUS1 ON”
30 END

:BUS<N>[:DISPlay]?

The :BUS<N>[:DISPlay]? query returns the display value of the selected bus.

[:BUS<N>] {1 | 0}<NL>

9-9

Bus Commands
LABel

Command

<N>

<quoted_string>

Example

Query

Return format

LABel

:BUS<N>:LABel <quoted_string>

| The BUS commands only apply to the MSO Oscilloscopes. |

The :BUS<N>:LABel command sets the bus label to the quoted string. Setting
a label for a bus will also result in the name being added to the label list.

Label strings are 16 characters or less, and may contain any commonly used ASCII
characters. Labels with more than 16 characters are truncated to 16 characters.

An integer, 1- 4.

A series of 6 or less characters as a quoted ASCII string.

This example sets the bus 1 label to Data.

10 Output 707;”BUS1:LABEL ““Data”””
20 END

: BUS<N>:LABel?

The :BUS<N>:LABel? query returns the name of the specified bus.

[:BUS<N>:LABel] <quoted_string><NL>

9-10

Bus Commands
READout

Command

<N>

Example

Query

Return format

READout

:BUS<N>:READout {HEX | DECimal | SYMBol

| The BUS commands only apply to the MSO Oscilloscopes.

The :BUS<N>:READout command changes the format of the numbers
displayed in the bus waveform.

An integer, 1-4.

This example sets the bus read out to decimal.

10 Output 707;”BUS1:READOUT DECIMAL
20 END

:BUS<N>:READout?

The :BUS<N>:READout? query returns the format of the readout control.

[:BUS<N>:READout] {HEX | DECimal | SYMBol}<NL>

9-11

Bus Commands
READout

10

Calibration Commands

Calibration Commands

This chapter briefly explains the calibration of the oscilloscope. It is
intended to give you and the calibration lab personnel an understanding
of the calibration procedure and how the calibration subsystem is
intended to be used.

10-2

Calibration Commands
Oscilloscope Calibration

See Also

Oscilloscope Calibration

Oscilloscope calibration establishes calibration factors for the oscilloscope.
These factors are stored on the oscilloscope's hard disk.

Initiate the calibration from the “Utilities Calibration” menu.

You should calibrate the oscilloscope periodically (at least annually), or if the
ambient temperature since the last calibration has changed more than £10 °C.
The temperature change since the last calibration is shown on the calibration
status screen which is found under the “Utilities Calibration” dialog. It is the
line labeled “Calibration A Temp: _ °C.”

To perform the oscilloscope calibration, you need a BNC-to-BNC cable such as
the 8120-1840 cable. When you initiate the calibration, instructions appear on
the screen describing how to perform the calibration.

The Oscilloscope’s Service Guide has more details about the calibration.

10-3

Calibration Commands
Probe Calibration

Probe Calibration

Probe calibration establishes the gain and offset of a probe that is connected to
a channel of the oscilloscope, and applies these factors to the calibration of that
channel.

Initiate probe calibration from the “Utilities Calibration” menu.

To achieve the specified accuracy (+2%) with a probe connected to a channel,
make sure the oscilloscope is calibrated.

For active probes that the oscilloscope can identify through the probe power
connector, like the 11568A, the oscilloscope automatically adjusts the vertical
scale factors for that channel even if a probe calibration is not performed.

For passive probes or nonidentified probes, the oscilloscope adjusts the
vertical scale factors only if a probe calibration is performed.

If you do not perform a probe calibration but want to use a passive
probe, enter the attenuation factor in the Probe Cal dialog under the
Channel dialog.

If the probe being calibrated has an attenuation factor that allows the
oscilloscope to adjust the gain (in hardware) to produce even steps in the
vertical scale factors, the oscilloscope will do so.

If the probe being calibrated has an unusual attenuation, like 3.75, the
oscilloscope may have to adjust the vertical scale factors to an unusual
number, like 3.75 V/div.

Typically, probes have standard attenuation factors such as divide by 10, divide
by 20, or divide by 100.

10-4

Calibration Commands

The commands in the CALibration subsystem allow you to change the
output of the front-panel Aux Out connector, adjust the skew of the
channels, and check the status of the calibration. These CALibration
commands and queries are implemented in the Infiniium Oscilloscopes:
e OUTPut

e SKEW

e STATus?

10-5

Calibration Commands
OUTPut

Command

<dc_value>

Example

Query

Returned Format

Example

OUTPut

:CALibrate:0UTPut {{AC|TRIGOUT} | {DC,<dc_value>}}

The :CALibrate:OUTPut command sets the coupling frequency, trigger output
pulse, and dc level of the calibrator waveform output through the front-panel
Aux Out connector. To trigger other instruments, use the TRIGOUT setting to
cause the oscilloscope to send a pulse when the trigger event occurs.

Arealnumber for the DC level value in volts, adjustable from-2.4 Vto +2.4 VDC.

This example puts a DC voltage of 2.0 volts on the oscilloscope front-panel Aux
Out connector.

10 OUTPUT 707;":CALIBRATE:OUTPUT DC,2.0"
20 END

:CALibrate:0UTPut?

The :CALibrate:OUTPut? query returns the current setup.

[:CALibrate:0UTPut] {{AC|TRIGOUT} | {DC,<dc_value>}}

This example places the current selection for the DC calibration to be printed
in the string variable, Selection$, then prints the contents of the variable to the
computer's screen.

10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707; " :CALIBRATE:OQUTPUT?"

30 ENTER 707;Selection$

40 PRINT Selection$

50 END

10-6

Calibration Commands
SKEW

SKEW

Command :CALibrate:SKEW {CHANnel<N> | EXTernal}l, <skew_value>

The :CALibrate:SKEW command sets the channel-to-channel skew factor for a
channel. The numeric argument is a real number in seconds, which is added to
the current time base position to shift the position of the channel’s data in time.
Use this command to compensate for differences in the electrical lengths of
input paths due to cabling and probes.

<N> An integer, 1 - 2, for two channel oscilloscopes Infiniium Oscilloscope models.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<skew_value> A real number, in seconds.

Example This example sets the oscilloscope channel 1 skew to 0.1 s.
10 OUTPUT 707;":CALIBRATE:SKEW CHANNEL1,0.1"
20 END

Query :CALibrate:SKEW? {CHANnel<N>|EXTernal}

The :CALibrate:SKEW? query returns the current skew value.

Returned Format [:CALibrate:SKEW] <skew_value><NL>

10-7

Calibration Commands
STATus?

STATus?

Query :CALibrate:STATus?

The :CALibrate:STATus? query returns the calibration status of the
oscilloscope. These are ten, comma-separated integers, with 1, 0, or -1. A "1"
indicates pass, a "0" indicates fail and a "-1" indicates unused. This matches the
status in the Calibration dialog box in the Utilities menu.

Returned Format [:CALibrate:STATus] <status>

<status> <Frame Status>,
<Channell Vertical>, <Channell Trigger>,
<Channel2 Vertical>, <Channel2 Trigger>,
<Channel3 Vertical>, <Channel3 Trigger>, (-1 for two channel oscilloscopes)
<Channel4 Vertical>, <Channel4 Trigger>, (-1 for two channel oscilloscopes)
<Aux Trigger> (<Ext Trigger> for two channel oscilloscopes)

10-8

11

Channel Commands

Channel Commands

The CHANnel subsystem commands control all vertical (Y axis)
functions of the oscilloscope. You may toggle the channel displays on
and off with the root level commands :VIEW and :BLANK, or with
:CHANnel:DISPlay.

These CHANnel commands and queries are implemented:

e BWLimit

e DISPlay

e INPut

e OFFSet

e PROBe

¢ PROBe:ATTenuation (only for the 1154A probe)

e PROBe:EADapter (only for the 1153A, 11564A, and 1159A probes)
e PROBe:ECoupling (only for the 11563A, 1154A, and 1159A probes)
e PROBe:EXTernal

e PROBe:EXTernal:GAIN

¢ PROBe:EXTernal:OFFSet

¢ PROBe:EXTernal:UNITs

e PROBe:GAIN (only for the 1154A probe)

e PROBe:HEAD:ADD

e PROBe:HEAD:DELete

e PROBe:HEAD:SELect

e PROBe:ID?

e PROBe:SKEW

e PROBe:STYPe (only for 113xA series, 1168A, and 1169A probes)
e RANGe

e SCALe

e UNITs

Channel Commands
BWLimit

Command

<N>

Example

Query

Returned Format

Example

BWLimit
:CHANnel<N>:BWLimit {{ON|1} | {OFF|0}}

The :CHANnel<N>:BWLimit command controls the low-pass filter.

When ON, the bandwidth of the specified channel is limited. The bandwidth
limit filter can be used with either AC or DC coupling.

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets the internal low-pass filter to "ON" for channel 1.

10 OUTPUT 707;":CHANNELL:BWLIMIT ON"
20 END

:CHANnel<N>:BWLimit?

The :CHANnel<N>:BWLimit? query returns the state of the low-pass filter for
the specified channel.

[:CHANnel<N>:BWLimit] {1|0}<NL>

This example places the current setting of the low-pass filter in the variable
Limit, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707; "SYSTEM:HEADER OFF"
20 OouTPUT 707;":CHANNELI:BWLIMIT?"
30 ENTER 707;Limit

40 PRINT Limit

50 END

11-3

Channel Commands
DISPlay

Command

<N>

Example

Query

Returned Format

Example

DISPlay

:CHANnel<N>:DISPlay {{ON|1} | {OFF|0}}

The :CHANnel<N>:DISPlay command turns the display of the specified channel
on or off.

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets channel 1 display to on.

10 OUTPUT 707; "CHANNELI:DISPLAY ON"
20 END

:CHANNnel<N>:DISPlay?

The :CHANnel<N>:DISPlay? query returns the current display condition for the
specified channel.

[:CHANnel<N>:DISPlay] {1|0}<NL>

This example places the current setting of the channel 1 display in the variable
Display, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707; " :CHANNEL1:DISPLAY?"
30 ENTER 707;Display

40 PRINT Display

50 END

Channel Commands
INPut

Command
<N>
<parameter>
Example
Query

Returned Format

Example

INPut

:CHANNnel<N>:INPut <parameter>

The :CHANnel<N>:INPut command selects the input coupling, impedance, and
LF/HF reject for the specified channel. The coupling for each channel can be
AC, DC, DC50, or DCFifty when no probe is attached. If you have an 1153A
probe attached, the valid parameters are DC, LFR1, and LFR2 (low-frequency
reject).

An integer, 1 - 2, for two channel Infiniium Oscilloscope.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
The parameters available in this command for Infiniium are.
e DC: DC coupling, 1 MQ input impedance

e DCH0 | DCFifty: DC coupling, 50Q2 input impedance

e AC: AC 1 MQ input impedance

e LFR1ILFR2: AC 1 MQ input impedance

This example sets the channel 1 input to DC50.

10 OUTPUT 707;":CHANNELL:INPut DC50"
20 END

:CHANnel<N>:INPut?

The :CHANnel<N>:INPut? query returns the selected channel input parameter.

[CHANnel<N>:INPut]<parameter><NL>

This example puts the current input for channel 1 in the string variable, Input$.
The program then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707; " :CHANNEL1: INPUT?
30 ENTER 707;Input$

40 PRINT Input$

50 END

11-5

Channel Commands
OFFSet

Command

<N>

<offset _value>

Example

Query

Returned Format

Example

OFFSet

:CHANnel<N>:0FFSet <offset_value>

The :CHANnel<N>:OFFSet command sets the voltage that isrepresented at the
center of the display for the selected channel. Offset parameters are probe and
vertical scale dependent.

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the offset value at center screen. Usually expressed in volts,
but can be in other measurement units, such as amperes, if you have specified
other units using the :CHANnel<N>:UNITs command.

This example sets the offset for channel 1 to 0.125 in the current measurement
units:

10 OUTPUT 707;":CHANNEL1:OFFSET 125E-3"
20 END

:CHANnel<N>:OFFSet?

The :CHANnel<N>:OFFSet? query returns the current offset value for the
specified channel.

[CHANnel<N>:0FFSet] <offset_value><NL>

This example places the offset value of the specified channel in the string
variable, Offset$, then prints the contents of the variable to the computer's
screen.

10 OUTPUT 707; "SYSTEM:HEADER OFF"
20 OUTPUT 707; "CHANNELL1:OFFSET?"
30 ENTER 707;0ffset

40 PRINT Offset

50 END

Channel Commands
PROBe

Command

<attenuation

<N>

_factor>

Example

PROBe

:CHANnel<N>:PROBe <attenuation_factor>[, {RATio |
DECibel}]

The :CHANnel<N>:PROBe command sets the probe attenuation factor and,
optionally, the units for the probe attenuation factor. The range of the probe
attenuation factor is from 0.0001 to 1,000 and from —80 dB to 60 dB.

The reference factors that are used for scaling the display are changed with this
command, and affect automatic measurements and trigger levels.

The “,DEC” or “,RAT” also sets the “mode” for the probe attenuation. This mode
also determines the units that may be used for a subsequent command. For
example, if you select RATio mode, then the attenuation factor must be given
in. In “DECibel” mode, you can specify the units for the argument as “dB”.

An integer, 1-2, for two channel Infiniium Oscilloscope.
An integer, 1-4, for all other Infiniium Oscilloscope models.

A real number from 0.0001 to 1,000 for the RATio attenuation units or from —
80 dB to 60 dB for the DECibel attenuation units.

This example sets the probe attenuation factor for a 10:1 probe on channel 1 in
ratio mode.

10 OUTPUT 707;":CHANNEL1:PROBE 10,RAT"
20 END

11-7

Query

Returned Format

Example

Channel Commands
PROBe

:CHANnel<N>: PROBe?

The :

CHANnel<N>:PROBe? query returns the current probe attenuation

setting for the selected channel and the units.

[:CHANnel<N>:PROBe] <attenuation>, {RATio | DECibel}<NL>

This example places the current attenuation setting for channel 1 in the string
variable, Atten$, then the program prints the contents.

10
20
30
40
50

DIM Atten$[50] !Dimension variable
OUTPUT 707; " :CHANNELL : PROBE?
ENTER 707;Atten$

PRINT Atten$

END

If you use a string variable, the query returns the attenuation value and the
factor (decibel or ratio). If you use an integer variable, the query returns the
attenuation value. You must then read the attenuation units into a string
variable.

Channel Commands
PROBe:ATTenuation

Command

<N>

Example

Query

Returned Format

PROBe:ATTenuation

:CHANnel<N>:PROBe:ATTenuation {DIV1 | DIV10}

The :CHANnel<N>:PROBe:ATTenuation command sets the probe’s
attenuation. The 1154A probe has the ability to change the probe’s input
amplifier’s attenuation.

This command is only available when an Infiniium 1154A probe is connected to
a channel. If the 1154A probe is not connected to a channel you will get a
settings conflict error.

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets the probe attenuation for channel 1 to divide by 10.

10 OUTPUT 707;":CHANNELL:PROBE:ATTENUATION DIV10"
20 END

:CHANnel<N>:PROBe:ATTenuation?

The :CHANnel<N>:PROBe:ATTenuation? query returns the current probe
attenuation setting for the selected channel.

[:CHANnel<N>:PROBe:ATTenuation] {DIV1 | DIV10}<NL>

11-9

Channel Commands
PROBe:EADapter

Command

<N>

Example

PROBe:EADapter

: CHANnel<N>:PROBe:EADapter {NONE | DIV10 |
DIV20 | DIV100}

The :CHANnel<N>:PROBe:EADapter command sets the Infiniium external
adapter control. The 1153A, 1154A, and 1159A are probes that have external
adapters that you can attach to the end of the probe. When you attach one of
these adapters, you should use the EADapter command to set the external
adapter control to match the adapter connected to your probe as follows.

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

DIV10 Use this setting when you have a divide by
10 adapter connected to the end of your
probe.

DIV20 Use this setting when you have a divide by
20 adapter connected to the end of your
probe. (1159A only)

DIV100 Use this setting when you have a divide by
100 adapter connected to the end of your
probe. (1153A only)

This command is only available when an 1153A, 1154A, or 1159A probe is
connected to a channel. If one of these probes is not connected to the channel
you will get a settings conflict error.

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets the external adapter for channel 1 to divide by 10:

10 OUTPUT 707; " :CHANNELL:PROBE:EADAPTER DIV10"
20 END

11-10

Query

Returned Format

Example

Channel Commands
PROBe:EADapter

:CHANNnel<N>:PROBe:EADapter?

The :CHANnel<N>:PROBe:EADapter? query returns the current external
adapter value for the specified channel.

[CHANnel<N>:PROBe:EDApter] {NONE | DIV10 | DIV20 |
DIV100}<NL>

This example places the external adapter value of the specified channel in the
string variable, Adapter$, then prints the contents of the variable to the
computer's screen.

10
20
30
40
50

DIM Adapter$[50]!Dimension variable
OUTPUT 707; " :CHANNELL : PROBE : EADAPTER?
ENTER 707;Adapters$

PRINT Adapter$

END

11-11

Channel Commands
PROBe:ECoupling

Command

<N>

Example

PROBe:ECoupling

: CHANnel<N>:PROBe:ECoupling {NONE | AC}

The :CHANnel<N>:PROBe:ECoupling command sets the Infiniium external
coupling adapter control. The 1153A, 1154A, and 1159A probes have external
coupling adapters that you can attach to the end of the probe. When you attach
one of these adapters, you should use the ECoupling command to set the
external coupling adapter control to match the adapter connected to your probe
as follows.

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

AC Use this setting when you have an ac
coupling adapter connected to the end of
your probe.

This command is only available when an 1153A, 1154A, or 1159A probe is
connected to a channel. If one of these probes is not connected to the channel
you will get a settings conflict error.

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets the external coupling adapter for channel 1 to ac:

10 OUTPUT 707;":CHANNELL: PROBE:ECOUPLING AC"
20 END

11-12

Query

Returned Format

Example

Channel Commands
PROBe:ECoupling

:CHANNnel<N>:PROBe:ECoupling?

The :CHANnel<N>:PROBe:ECoupling? query returns the current external
adapter coupling value for the specified channel.

[CHANnel<N>:PROBe:ECoupling] {NONE | AC}<NL>

This example places the external coupling adapter value of the specified
channel in the string variable, Adapter$, then prints the contents of the variable
to the computer's screen.

10
20
30
40
50

DIM Adapter$[50] !Dimension variable
OUTPUT 707;" :CHANNELL : PROBE : ECOUPLING?
ENTER 707;Adapters$

PRINT Adapter$

END

11-13

Channel Commands
PROBe:EXTernal

rmmand

<N>

Example

Query

Returned Format

Example

PROBe:EXTernal

:CHANnel<N>:PROBe:EXTernal {{ON|1} | {OFF|0}}

The :CHANnel<N>:PROBe:EXTernal command sets the external probe mode
to on or off.

An integer, 1 -4

This example sets channel 1 external probe mode to on.

10 OUTPUT 707; "CHANNELI : PROBE: EXTERNAL ON"
20 END

:CHANnel<N>: PROBe:EXTernal?

The :CHANnel<N>:PROBe:EXTernal? query returns the current external probe
mode for the specified channel.

[:CHANnel<N>:PROBe:EXTernal] {l|0}<NL>

This example places the current setting of the external probe mode on channel
1in the variable Mode, then prints the contents of the variable to the computer's
screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF"

20 OUTPUT 707; " :CHANNEL1 : PROBE: EXTERNAL?"
30 ENTER 707;Mode

40 PRINT Mode

50 END

11-14

Channel Commands
PROBe:EXTernal:GAIN

Command

<N>

<gain_factor>

Example

PROBe:EXTernal: GAIN

:CHANnel<N>:PROBe:EXTernal : GAIN
<gain_factor>[, {RATio | DECibel}]

CHANnel<N>:PROBe:EXTernal command must be set to ON before issuing this
command or query or this command will have no effect.

The :CHANnel<N>:PROBe:EXTernal: GAIN command sets the probe external
scaling gain factor and, optionally, the units for the probe gain factor. The
reference factors that are used for scaling the display are changed with this
command, and affect automatic measurements and trigger levels.

The RATio or DECibel also sets the mode for the probe attenuation and also
determines the units that may be used for a subsequent command. For example,
if you select RATio mode, then the attenuation factor must be given in ratio gain
units. In DECibel mode, you can specify the units for the argument as “dB”.

An integer, 1 -4

A real number from 0.001 to 10000 for the RATio gain units, or from —60 dB to
80 dB for the DECibel gain units.

This example sets the probe external scaling gain factor for channel 1 to 10.

10 OUTPUT 707;":CHANNEL1: PROBE: EXTERNAL ON"
20 OUTPUT 707; " :CHANNELI : PROBE: EXTERNAL:GAIN 10,RATIO"
30 END

11-15

Query

Returned Format

Example

Channel Commands
PROBe:EXTernal:GAIN

:CHANnel<N>: PROBe:EXTernal : GAIN?

The :CHANnel<N>:PROBe:EXTernal:GAIN? query returns the probe external
gain setting for the selected channel.

[: CHANnel<N>:PROBe:EXTernal :GAIN] <gain_factor><NL>

This example places the external gain value of the probe on the specified
channel in the variable, Gain, then prints the contents of the variable to the
computer's screen.

10
20
30
40
50

OUTPUT 707; " :CHANNELL : PROBE : EXTERNAL ON"
OUTPUT 707;" :CHANNELL : PROBE : EXTERNAL : GAIN?"
ENTER 707;Gain

PRINT Gain

END

11-16

Channel Commands
PROBe:EXTernal:0FFSet

Command

<N>

<offset_value>

Example

PROBe:EXTernal:OFFSet

:CHANnel<N>:PROBe:EXTernal : OFFSet <offset_value>

CHANnel<N>:PROBe:EXTernal command must be set to ON before issuing this
command or query or this command will have no effect.

The :CHANnel<N>:PROBe:EXTernal:OFFSet command sets the external
vertical value for the probe that is represented at the center of the display for
the selected channel. Offset parameters are probe and vertical scale dependent.

When using the 113xA, series probes, the CHANnel<N>:PROBe:STYPe
command determines how the offset is applied. When
CHANnel<N>:PROBe:STYPe SINGle is selected, the
:CHANnel<N>:PROBe:EXTernal:OFFset command changes the offset value of
the probe amplifier. When CHANnel<N>:PROBe:STYPe DIFFerential is
selected, the :CHANnel<N>:PROBe:EXTernal:OFFSet command changes the
offset value of the channel amplifier.

An integer, 1 -4

A real number for the offset value at center screen. Usually expressed in volts,
but can be in other measurement units, such as amperes, if you have specified
other units using the :CHANnel<N>:PROBe:EXTernal:UNITs command.

This example sets the external offset for the probe on channel 1 to 0.125 in the
current measurement units:
10 OUTPUT 707; "CHANNELL : PROBE: EXTERNAL ON"

20 OUTPUT 707; " :CHANNELI : PROBE: EXTERNAL:OFFSET 125E-3"
30 END

11-17

Query

Returned Format

Example

Channel Commands
PROBe:EXTernal:0FFSet

:CHANnel<N>:EXTernal : PROBe: OFFSet?

The :CHANnel<N>:PROBe:EXTernal:OFFSet? query returns the current
external offset value for the probe on the specified channel.

[CHANnel<N>:PROBe:EXTernal :OFFSet] <offset_value><NL>

This example places the external offset value of the probe on the specified
channel in the variable, Offset, then prints the contents of the variable to the
computer's screen.

10
20
30
40
50
60

OUTPUT 707; "SYSTEM:HEADER OFF"

OUTPUT 707; "CHANNEL1 : PROBE : EXTERNAL ON"
OUTPUT 707; "CHANNEL]1 : PROBE : EXTERNAL : OFFSET? "
ENTER 707;0ffset

PRINT Offset

END

11-18

Channel Commands
PROBe:EXTernal:UNITs

Command

Example

PROBe:EXTernal:UNITs

: CHANnel<N>:PROBe:EXTernal:UNITs {VOLT | AMPere |
WATT | UNKNown}

CHANnel<N>:PROBe:EXTernal command must be set to ON before issuing this
command or query or this command will have no effect. UNITs can also be set using
the CHANnel<N>:UNITs command.

The :CHANnel<N>:PROBe:EXTernal:UNITs command sets the probe external
vertical units on the specified channel. You can specify Y-axis units of VOLTs,
AMPs, WATTs, or UNKNown. The units are implied for other pertinent channel
probe external commands and channel commands (such as
:CHANnel<N>:PROBe:EXTernal:OFFSet and :CHANnel<N>:RANGe). See the
Probe Setup dialog box for more information.

<N> Aninteger, 1-4

This example sets the external units for the probe on channel 1 to amperes.

10 OUTPUT 707; "CHANNELL : PROBE: EXTERNAL ON"
20 OUTPUT 707; " :CHANNELI : PROBE: EXTERNAL:UNITS AMPERE"
30 END

11-19

Query

Returned Format

Example

Channel Commands
PROBe:EXTernal:UNITs

:CHANnel<N>: PROBe:EXTernal :UNITs?

The :CHANnel<N>:PROBe:EXTernal:UNITs? query returns the current
external units setting for the probe on the specified channel.

[: CHANnel<N>:PROBe:EXTernal :UNITs] {VOLT | AMPere | WATT |
UNKNown } <NL>

This example places the external vertical units for the probe on the specified
channel in the string variable, Units$, then prints the contents of the variable
to the computer's screen.

10
20
30
40
50
60

DIM Units$[50]

OUTPUT 707; "CHANNEL1 : PROBE : EXTERNAL ON"
OUTPUT 707 ; "CHANNEL1 : PROBE : EXTERNAL : UNITS?"
ENTER 707;Units$

PRINT Units$

END

11-20

Channel Commands
PROBe:GAIN

Command

<N>

Example

Query

Returned Format

PROBe:GAIN

: CHANnel<N>:PROBe:GAIN {X1 | X10}

The :CHANnel<N>:PROBe:GAIN command sets the probe gain. The 1154A
probe has the ability to change the probe’s input amplifier gain.

This command is only available when 1154A probe is connected to a channel. If
one of these probes is not connected to the channel you will get a settings conflict
error.

The units of volts, amperes, watts, and unknown are set using the
:CHANnNel<N>:UNITs command.

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets the probe gain for channel 1 to times 10.

10 OUTPUT 707;":CHANNELL:PROBE:GAIN X10"
20 END

:CHANnel<N>:PROBe:GAIN?

The :CHANnel<N>:PROBe:GAIN? query returns the current probe gain setting
for the selected channel.

[:CHANnel<N>:PROBe:GAIN] {X1 | X10}<NL>

11-21

Channel Commands
PROBe:HEAD:ADD

PROBe:HEAD:ADD

:CHANnel<N>:PROBe:HEAD:ADD “head”, [“label”]

The :CHANnel<N>:PROBe:HEAD:ADD command adds an entry to the list of
probe heads.

<N> Aninteger, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

“head” A quoted string matching the probe head model such as “N5381A”, “E2678A”,
etc.

“label” An optional quoted string for the head label.

Example This example adds the probe head N5381A to the list of probe heads for channel
1.
10 OUTPUT 707;":CHANNELI :PROBE:HEAD:ADD “N5381A”""
20 END

Query There is no query available for this command.

11-22

Channel Commands
PROBe:HEAD:DELete ALL

<N>

Example

Query

PROBe:HEAD:DELete ALL

:CHANnel<N>:PROBe:HEAD:DELete ALL

The :CHANnel<N>:PROBe:HEAD:DELete ALL command deletes all the nodes
in the list of probe heads except for one default probe head which remains after
this command is executed.

Aninteger, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example deletes the entire list of probe heads for channel 1 except for the
defualt head.

10 OUTPUT 707;":CHANNELL:PROBE:HEAD:DELete ALL"
20 END

There is no query available for this command.

11-23

Channel Commands
PROBe:HEAD:SELect

<head_list_

<N>

number>

Example

Query

PROBe:HEAD:SELect

:CHANNnel<N>:PROBe:HEAD: SELect <head_list_number>

The :CHANnel<N>:PROBe:HEAD:SELect command selects the position
number of the probe head being used from a list of possible probe head choices.
Note that the actual probe head model number or label cannot be used to specify
the probe head. Instead, its position in the list is used to indicate which probe
head is being used.

Use the :CHANnel<N>:PROBe:HEAD:DELete ALL and the
:CHANnel<N>:PROBe:HEAD:ADD commands to delete and add probe heads
from the list.

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Specifies the position in the configure list. The entry at the top of the list starts
at 1. Note that this command does not reference the list by label or model
number because there can be duplicate entries in the list.

This example sets the probe head for channel 1 to the first selection in the
configuration list.

10 OUTPUT 707; " :CHANNELL:PROBE:HEAD:SELect 1"
20 END

:CHANnel<N>:PROBe:HEAD: SELect?

The :CHANnel<N>:PROBe:HEAD:SELect? query returns a SCPI formatted
string of the selected head.

11-24

Channel Commands
PROBe:ID?

Query

<N>

Returned Format

<probe_id>

PROBe:ID?

:CHANnel<N>:PROBe:ID?

The :CHANnel<N>:PROBe:ID? query returns the type of probe attached to the

specified oscilloscope channel.

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

[:CHANnel<N>:PROBe:ID] <probe_id>

A string of up to 9 alphanumeric characters. Some of the possible returned
values are:

1131A
1132A
1134A
1147A
1153A
1154A
1156A
1157A
1158A
1159A
AutoProbe
E2621A
E2622A
E2695A
E2697A
HP1152A
HP1153A
NONE
Probe
Unknown

11-25

Channel Commands

PROBe:ID?
Example This example reports the probe type connected to channel 1, if one is
connected.
10 OUTPUT 707;":CHANNELI:PROBE:ID?"
20 END

11-26

Channel Commands
PROBe:SKEW

Command

<N>

<skew_value>

Example

Query

Returned Format

PROBe:SKEW

:CHANnel<N>: PROBe: SKEW <skew_value>

The :CHANnel<N>:PROBe:SKEW command sets the channel-to-channel skew
factor for the specified channel. You can use the oscilloscope's probe skew
control to remove timing differences between probes or cables on different
channels.

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the skew value, in the range -100 ps to 100 us.

This example sets the probe skew for channel 1 to 10 pus.

10 OUTPUT 707; " :CHANNELL:PROBE:SKEW 10E-6"
20 END

:CHANnel<N>:PROBe: SKEW?

The :CHANnel<N>:PROBe:SKEW? query returns the current probe skew
setting for the selected channel.

[:CHANnel<N>:PROBe:SKEW] <skew_value><NL>

11-27

Channel Commands
PROBe:STYPe

PROBe:STYPe

Command :CHANnel<N>:PROBe:STYPe {DIFFerential | SINGle}

| This command is valid only for the 113xA series, 168A, and 1169A probes. |

The :CHANnel<N>:PROBe:STYPe command sets the channel probe signal type
(STYPe) to differential or single-ended when using the 113xA series, 1168A,
and 1169A probes and determines how offset is applied.

When single-ended is selected, the :CHANnel<N>:PROBe:EXTernal:OFFset
command changes the offset value of the probe amplifier. When differential is
selected, the :CHANnel<N>:PROBe:EXTernal:OFFset command changes the
offset value of the channel amplifier.

<N> Aninteger, 1-4

Example This example sets the probe mode to single-ended..
10 OUTPUT 707;":CHANNELL: PROBE: STYPE SINGLE"
20 END

Query :CHANnel<N>:PROBe:STYPe?

The :CHANnel<N>:PROBe:STYPe? query returns the current probe mode
setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:STYPe] {DIFFerential | SINGle}<NL>

11-28

Channel Commands
RANGe

Command

<N>

<range_value>

Example

Query

Returned Format

Example

RANGe

:CHANnel<N>:RANGe <range_value>

The :CHANnel<N>:RANGe command defines the full-scale vertical axis of the
selected channel. It sets up acquisition and display hardware to display the
waveform at a given range scale. The values represent the full-scale deflection
factor of the vertical axis in volts. These values change as the probe attenuation
factor is changed.

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

A real number for the full-scale voltage of the specified channel number.

This example sets the full-scale range for channel 1 to 500 mV.

10 OUTPUT 707;":CHANNELL:RANGE 500E-3"
20 END

:CHANnel<N>: RANGe?

The :CHANnel<N>:RANGe? query returns the current full-scale vertical axis
setting for the selected channel.

[:CHANnel<N>:RANGe] <range_value><NL>

This example places the current range value in the number variable, Setting,
then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707; " :CHANNELI1 :RANGE?"

30 ENTER 707;Setting

40 PRINT Setting

50 END

11-29

Channel Commands
SCALe

SCALe

Command :CHANnel<N>:SCALe <scale_value>

The :CHANnel<N>:SCALe command sets the vertical scale, or units per
division, of the selected channel. This command is the same as the front-panel
channel scale.

<N> Aninteger, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<scale_value> A real number for the vertical scale of the channel in units per division.

Example This example sets the scale value for channel 1 to 500 mV/div.
10 OUTPUT 707;":CHANNEL1:SCALE 500E-3"
20 END

Query :CHANnel<N>:SCALe?

The :CHANnel<N>:SCALe? query returns the current scale setting for the
specified channel.

Returned Format [:CHANnel<N>:SCALe] <scale_value><NL>

Example This example places the current scale value in the number variable, Setting,
then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :CHANNEL1:SCALE?"

30 ENTER 707;Setting

40 PRINT Setting

50 END

11-30

Channel Commands
UNITs

Command

<N>

Example

Query

Returned Format

Example

UNITs

:CHANnel<N>:UNITs {VOLT | AMPere | WATT | UNKNown}

The :CHANnel<N>:UNITs command sets the vertical units. You can specify
Y-axis units of VOLTs, AMPs, WATTs, or UNKNown. The units are implied for
other pertinent channel commands (such as :CHANnel<N>:RANGe and
:CHANnel<N>:OFFSet). See the Probe Setup dialog box for more information.

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

This example sets the units for channel 1 to amperes.

10 OUTPUT 707;":CHANNEL1:UNITS AMPERE"
20 END

:CHANnel<N>:UNITs?

The :CHANnel<N>:UNITs? query returns the current units setting for the
specified channel.

[:CHANnel<N>:UNITs] {VOLT | AMPere | WATT | UNKNown}<NL>

This example places the vertical units for the specified channel in the string
variable, Units$, then prints the contents of the variable to the computer's
screen.

10 DIM Units$[50]

20 OUTPUT 707; "CHANNEL1:UNITS?"
30 ENTER 707;Units$

40 PRINT Units$

50 END

11-31

Channel Commands
UNITs

11-32

12

Common Commands

Common Commands

Common commands are defined by the IEEE 488.2 standard. They
control generic device functions that are common to many different
types of instruments. Common commands can be received and
processed by the oscilloscope, whether they are sent over the GPIB as
separate program messages or within other program messages.

These common commands and queries are implemented in the Infiniium
Oscilloscopes:

e *CLS (Clear Status)

e *ESE (Event Status Enable)

e *LSR? (Event Status Register)
e *[DN? (Identification Number)
e *LRN? (Learn)

e *OQPC (Operation Complete)

e *OPT? (Option)

e *PSC (Power-on Status Clear)

e *RCL (Recall)

e *RST (Reset)

e *SAV (Save)

e *SRE (Service Request Enable)
e *STB? (Status Byte)

e *TRG (Trigger)

e *TST? (Test)

e *WAI (Wait-to-Continue)

12-2

Table 12-1

Common Commands

Receiving Common Commands

Common commands can be received and processed by the oscilloscope,
whether they are sent over the GPIB as separate program messages or
within other program messages. If a subsystemis currently selected and
a common command is received by the oscilloscope, the oscilloscope

remains in the selected subsystem. For example, if the program message

"ACQUIRE:AVERAGE ON; *CLS; COUNT 1024"

is received by the oscilloscope, the oscilloscope sets the acquire type,
clears the status information, then sets the number of averages without
leaving the selected subsystem.

Headers and Common Commands.

Headers are not prepended to common commands.

Status Registers

The following two status registers used by common commands have an
enable (mask) register. By setting bits in the enable register, you can
select the status information for use. Refer to the chapter, “Status
Reporting,” for a complete discussion of status.

Status and Enable Registers

Status Register Enable Register
Event Status Register Event Status Enable Register
Status Byte Register Service Request Enable Register

12-3

Common Commands
*CLS (Clear Status)

*CLS (Clear Status)

Command *CLS

The *CLS command clears all status and error registers.

Example This example clears the status data structures of the oscilloscope.
10 OUTPUT 707;"*CLS"
20 END
See Also Refer to the “Status Reporting” chapter for a complete discussion of status.

12-4

Common Commands
*ESE (Event Status Enable)

Command

<mask>

Example

Query

Returned Format

<mask>

Example

*ESE (Event Status Enable)

*ESE <mask>

The *ESE command sets the Standard Event Status Enable Register bits.

Aninteger, 0 to 255, representing a mask value for the bits to be enabled in the
Standard Event Status Register as shown in Table 12-2.

This example enables the User Request (URQ) bit of the Standard Event Status
Enable Register. When this bit is enabled and a front-panel key is pressed, the
Event Summary bit (ESB) in the Status Byte Register is also set.

10 OUTPUT 707;"*ESE 64"
20 END

*ESE?

The *ESE? query returns the current contents of the Standard Event Status
Enable Register.

<mask><NL>

An integer, +0 to +255 (the plus sign is also returned), representing a mask
value for the bits enabled in the Standard Event Status Register as shown in
Table 12-2.

This example places the current contents of the Standard Event Status Enable
Register in the numeric variable, Event. The value of the variable is printed on
the computer's screen.

10 OuUTPUT 707;"*ESE?"
20 ENTER 707;Event

30 PRINT Event

40 END

12-5

Table 12-2

See Also

Common Commands
*ESE (Event Status Enable)

The Standard Event Status Enable Register contains a mask value for the bits
tobe enabled in the Standard Event Status Register. A"1"in the Standard Event
Status Enable Register enables the corresponding bit in the Standard Event
Status Register. A "0" in the enable register disables the corresponding bit.

Standard Event Status Enable Register Bits

Bit
17
6

Weight
128
64

32

16

Enables
PON - Power On

CME - Command Error

EXE - Execution Error

DDE - Device Dependent Error

QYE - Query Error
RQC - Request Control

OPC - Operation Complete

Definition
Indicates power is turned on.

Not Used.
Permanently set to zero.

Indicates whether the parser detected an
error.

Indicates whether a parameter was out of
range, or was inconsistent with the current
settings.

Indicates whether the device was unable to
complete an operation for device-
dependent reasons.

Indicates if the protocol for queries has
been violated.

Indicates whether the device is requesting
control.

Indicates whether the device has
completed all pending operations.

Refer to the chapter, “Status Reporting,” for a complete discussion of status.

12-6

Common Commands
*ESR? (Event Status Register)

Query

Returned Format

<status>

Example

*ESR? (Event Status Register)

*ESR?

The *ESR? query returns the contents of the Standard Event Status Register.
Reading this register clears the Standard Event Status Register, as does a *CLS.

<status><NL>

An integer, 0 to 255, representing the total bit weights of all bits that are high
at the time you read the register.

This example places the current contents of the Standard Event Status Register
in the numeric variable, Event, then prints the value of the variable to the
computer's screen.

10 OuTPUT 707;"*ESR?"
20 ENTER 707;Event

30 PRINT Event

40 END

Table 12-3 lists each bit in the Event Status Register and the corresponding bit
weights.

12-7

Common Commands
*ESR? (Event Status Register)

Table 12-3 Standard Event Status Register Bits
Bit Bit Weight Bit Name Condition
17 128 PON 1 = OFF to ON transition has occurred.
6 64 Not Used. Permanently set to zero.
5 32 CME 0 = no command errors.
1=a command error has been detected.
4 16 EXE 0 = no execution error.
1 =an execution error has been detected.
3 8 DDE 0 = no device-dependent errors.
1=a device-dependent error has been detected.
2 4 QYE 0 = no query errors.
1=a query error has been detected.
1 2 RaC 0 = request control - NOT used - always 0.
0 1 0PC 0 = operation is not complete.

1 = operation is complete.

0 =False = Low 1="True = High

12-8

Common Commands
*IDN? (Identification Number)

Query

<Model #>

<USXXXXXXXX>

<Rev #>

<Options>

Returned Format

Example

*IDN? (Identification Number)

*IDN?

The *IDN? query returns the company name, oscilloscope model number, serial
number, and software version by returning this string:

Agilent Technologies,<Model #>,<USXXXXXXXX>,<Rev #>
Specifies the model number of the oscilloscope.

Specifies the serial number of the oscilloscope. The first four digits and letter
are the serial prefix, which is the same for all identical oscilloscopes. The last
five digits are the serial suffix, which is assigned sequentially, and is different
for each oscilloscope.

Specifies the software version of the oscilloscope, and is the revision number.

Comma separated list of the installed options.

Agilent Technologies,DS08104A, USXXXXXXXX,A.XX.XX

This example places the oscilloscope's identification information in the string
variable, Identify$, then prints the identification information to the computer's
screen.

10 DIM Identify$[50]!dimension variable
20 OUTPUT 707;"*IDN?"

30 ENTER 707;Identify$

40 PRINT Identify$

50 END

12-9

Common Commands
*LRN? (Learn)

Query

Returned Format

<setup>

Example

*LRN? (Learn)
*TLRN?

The *LRN? query returns a string that contains the oscilloscope's current setup.
You can store the oscilloscope's setup and send it back to the oscilloscope at a
later time. This setup string should be sent to the oscilloscope just as it is. It
works because of its embedded ":SYSTem:SETup" header.

:SYSTem: SETup <setup><NL>

This is a definite-length, arbitrary block response specifying the current
oscilloscope setup. The block size is subject to change with different firmware
revisions.

This example sets the oscilloscope’s address and asks for the learn string, then
determines the string length according to the IEEE 488.2 block specification.
It then reads the string and the last EOF character.

10 ! Set up the oscilloscope’s address and
20 ! ask for the learn string...

30 ASSIGN @Scope TO 707

40 OUTPUT @Scope:"*LRN?"

50 !

60 ! Search for the # sign.

70 !

80 Find_pound_sign: !

90 ENTER @Scope USING "#,A";Thischar$

100 IF Thischar$<>"#" THEN Find_pound_sign
110 !

120 ! Determine the string length according
130 ! to the IEEE 488.2 # block spec.

140 ! Read the string then the last EOF char.
150 !

160 ENTER @Scope USING "#,D";Digit_count
170 ENTER @Scope USING

"#, "&VALS (Digit_count)&"D"; Stringlength

180 ALLOCATE Learn_string$[Stringlength+1]
190 ENTER @Scope USING "-K";Learn_string$
200 OUTPUT 707;":syst:err?"

210 ENTER 707;Errornum

220 PRINT "Error Status=";Errornum

12-10

See Also

Common Commands
*LRN? (Learn)

:SYSTem:SETup command and query. When HEADers and LONGform are ON,
the :SYSTem:SETup command performs the same function as the *LRN? query.
Otherwise, *LRN and SETup are not interchangeable.

*LRN? Returns Prefix to Setup Block
The *LRN query always returns :SYSTem:SETup as a prefix to the setup block.

The :SYSTem:HEADer command has no effect on this response.

12-11

Common Commands
*QPC (Operation Complete)

Command

Example

Query

Returned Format

Example

*OPC (Operation Complete)

*OPC

The *OPC command sets the operation complete bit in the Standard Event
Status Register when all pending device operations have finished.

This example sets the operation complete bit in the Standard Event Status
Register when the DIGitize operation is complete.

10 OUTPUT 707;":DIGITIZE CHANNEL1; *OPC"
20 END

*OPC?

The *OPC? query places an ASCII character “1” in the oscilloscope's output
queue when all pending selected device operations have finished.

1<NL>

This example places an ASCII character “1” in the oscilloscope's output queue
when the AUToscale operation is complete. Then the value in the output queue
is placed in the numeric variable “Complete.”

10 OUTPUT 707;" :AUTOSCALE; *OPC?"
20 ENTER 707;Complete

30 PRINT Complete

40 END

The *OPC? query allows synchronization between the computer and the
oscilloscope by using the message available (MAV) bit in the Status Byte, or by
reading the output queue. Unlike the *OPC command, the *OPC query does
not affect the OPC Event bit in the Standard Event Status Register.

12-12

Common Commands
*OPT? (Option)

Query

Returned Format

Example

*OPT? (Option)

*QOPT?

The *OPT? query returns a string with a list of installed options. If no options
are installed, the string will have a 0 as the first character.

The length of the returned string may increase as options become available in
the future. Once implemented, an option name will be appended to the end of
the returned string, delimited by a comma.

[001,002,640,320,160,080,040,EZP,CLK, EZJ, SDA, LSS, EBW, NRD,
ERC]<NL>

See on-line help system in the Help/About dialog box for the
installed options list.

This example places all options into the string variable, Options$, then prints
the option name to the computer's screen.

10 DIM Options$[100]
20 OUTPUT 707;"*OPT?"
30 ENTER 707;Options$
40 PRINT Options$

50 END

12-13

Common Commands
*PSC (Power-on Status Clear)

Command

Example

Query

Returned Format

Example

*PSC (Power-on Status Clear)

*PSC {{ON|1} | {OFF|0}}

The *PSC command determines whether or not the SRQ line is set upon the
completion of the oscilloscope’s boot process. When the *PSC flag is set to 1,
the Power On (PON) bit of the Standard Event Status Register is 0 during the
boot process. When the *PSC flag is set to 0, the PON bit is set to a 1 during
the boot process.

When the *PSC flag is set to 0, the Standard Event Status Enable Register must
be set to 128 decimal and the Service Request Enable Register must be set to
32 decimal. This allows the Power On (PON) bit to set the SRQ line when the
oscilloscope is ready to receive commands.

If you are using a LAN interface rather than a GPIB interface, it is not possible to
receive the SRQ during the boot process.

This example sets the *PSC flag to 0 which sets the SRQ line during the boot
process.

10 OUuTPUT 707;”*PSC 0;*SRE 32;*ESE 128"
20 END

The *PSC? query returns the value of the *PSC flag.

1<NL>

This example places the *PSC flag into the integer variable Pscflag.

10 OUTPUT 707;"*PSC?”
20 ENTER 707;Pscflag
30 PRINT Pscflag

40 END

12-14

Common Commands
*RCL (Recall)

Command

<register>

Example

See Also

*RCL (Recall)

*RCL <register>

The *RCL command restores the state of the oscilloscope to a setup previously
stored in the specified save/recall register. An oscilloscope setup must have
been stored previously in the specified register. Registers 0 through 9 are
general-purpose registers and can be used by the *RCL command.

An integer, 0 through 9, specifying the save/recall register that contains the
oscilloscope setup you want to recall.

This example restores the oscilloscope to the oscilloscope setup stored in
register 3.

10 OUTPUT 707;"*RCL 3"
20 END

*SAV (Save). An error message appears on the oscilloscope’s display if nothing
has been previously saved in the specified register.

12-15

Common Commands
*RST (Reset)

*RST (Reset)

Command *RST

The *RST command places the oscilloscope in a known state.

Default setup does change the :SYSTem:HEADer or the :SYSTem:LONGform
settings but does change the completion criteria (:ACQuire:COMPlete) to 90%.

Example This example resets the oscilloscope to a known state.

10 OUTPUT 707;"*RST"
20 END

The default values for all of the Infiniium controls is located in the Infiniium Help
System under Default Setup.

12-16

Common Commands
*SAV (Save)

Command

*SAV (Save)

*SAV <register>

The *SAV command stores the current state of the oscilloscope in a save
register.

<register> Aninteger, O through 9, specifying the register used to save the current

Example

See Also

oscilloscope setup.

This example stores the current oscilloscope setup to register 3.

10 OUTPUT 707;"*SAV 3"
20 END

*RCL (Recall).

12-17

Common Commands
*SRE (Service Request Enable)

Command

<mask>

Example

Query

Returned Format

<mask>

Example

*SRE (Service Request Enable)

*SRE <mask>

The *SRE command sets the Service Request Enable Register bits. By setting
the *SRE, when the event happens, you have enabled the oscilloscope’s
interrupt capability. The oscilloscope will then do an SRQ (service request),
which is an interrupt.

Aninteger, 0 to 255, representing a mask value for the bits to be enabled in the
Service Request Enable Register as shown in Table 12-4.

This example enables a service request to be generated when a message is
available in the output queue. When a message is available, the MAV bit is high.

10 OUTPUT 707;"*SRE 16"
20 END

*SRE?

The *SRE? query returns the current contents of the Service Request Enable
Register.

<mask><NL>

Aninteger, 0 to 255, representing a mask value for the bits enabled in the Service
Request Enable Register.

This example places the current contents of the Service Request Enable
Register in the numeric variable, Value, then prints the value of the variable to
the computer's screen.

10 OUTPUT 707;"*SRE?"
20 ENTER 707;Value
30 PRINT Value

40 END

12-18

Table 12-4

Common Commands
*SRE (Service Request Enable)

The Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A “1” in the Service Request Enable
Register enables the corresponding bit in the Status Byte Register. A “0”

disables the bit.

Service Request Enable Register Bits

=]
=

Weight
128

64

32

16

S = N W A& oo~

8
4
2
1

Enables

OPER - Operation Status Register
Not Used

ESB - Event Status Bit

MAV - Message Available

Not Used

MSG - Message

USR - User Event Register

TRG - Trigger

12-19

Common Commands
*STB? (Status Byte)

Query

Returned Format

<value>

Example

*STB? (Status Byte)

*STB?

The *STB? query returns the current contents of the Status Byte, including the
Master Summary Status (MSS) bit. See Table 12-5 for Status Byte Register bit
definitions.

<value><NL>

Aninteger, 0 to 255, representing a mask value for the bits enabled in the Status

Byte.

This example reads the contents of the Status Byte into the numeric variable,
Value, then prints the value of the variable to the computer's screen.

10 OuTpPUT 707;"*STB?"
20 ENTER 707;Value
30 PRINT Value

40 END

In response to a serial poll (SPOLL), Request Service (RQS) is reported on
bit 6 of the status byte. Otherwise, the Master Summary Status bit (MSS) is
reported on bit 6. MSSis the inclusive OR of the bitwise combination, excluding
bit 6, of the Status Byte Register and the Service Request Enable Register. The
MSS message indicates that the oscilloscope is requesting service (SRQ).

12-20

Table 12-5

Common Commands
*STB? (Status Byte)

Status Byte Register Bits

Bit
17

Bit Weight

128

64

32

16

Bit Name
OPER

RQS/MSS

ESB

MAV

MSG

USR

TRG

0 =False = Low

Condition

0=no enabled operation status conditions have occurred
1 =an enabled operation status condition has occurred

0 = oscilloscope has no reason for service
1 =oscilloscope is requesting service

0 = no event status conditions have occurred
1 =an enabled event status condition has occurred

0 = no output messages are ready
1 = an output message is ready

0 = not used

0 = no message has heen displayed
1 =message has heen displayed

0 =no enabled user event conditions have occurred
1 =an enabled user event condition has occurred

0 = no trigger has occurred
1=atrigger occurred

1=True = High

12-21

Common Commands
*TRG (Trigger)

Command

Example

*TRG (Trigger)
*TRG

The *TRG command has the same effect as the Group Execute Trigger message
(GET) or RUN command. It acquires data for the active waveform display, if
the trigger conditions are met, according to the current settings.

This example starts the data acquisition for the active waveform display
according to the current settings.

10 OUTPUT 707; "*TRG"
20 END

Trigger Conditions Must Be Met

When you send the *TRG command in Single trigger mode, the trigger conditions

must be met before the oscilloscope will acquire data.

12-22

Common Commands
*TST? (Test)

Query

Returned Format

<result>

Example

*TST? (Test)
*TST?

The *TST? query causes the oscilloscope to perform a self-test, and places a
response in the output queue indicating whether or not the self-test completed
without any detected errors. Use the :SYSTem:ERRor command to check for
errors. A zero indicates that the test passed and a non-zero indicates the self-
test failed.

Disconnect Inputs First

You must disconnect all front-panel inputs before sending the *TST? command.

<result><NL>

0 for pass; non-zero for fail.

This example performs a self-test on the oscilloscope and places the results in
the numeric variable, Results. The program then prints the results to the
computer's screen.

10 OuTPUT 707;"*TST?"
20 ENTER 707;Results
30 PRINT Results

40 END

If a test fails, refer to the troubleshooting section of the service guide.

Expanded Error Reporting

The :SELFtest:SCOPETEST command has expanded error reporting. Instead of using
*TST?, Agilent recommends that you use the :SELFtest: SCOPETEST command. In
either case, be sure you disconnect all front-panel inputs before sending the *TST?
command.

The self-test takes approximately 10 minutes to complete. When using timeouts
in your program, a 700-second duration is recommended.

12-23

Common Commands
*WAI (Wait)

*WAI (Wait)
Command *WAT

The *WAI command has no function in the oscilloscope, but is parsed for
compatibility with other instruments.

Example Output 707;”*WAI"

12-24

13

Digital Commands

Digital Commands

| The DIGital commands only apply to the MSO Oscilloscopes. |

The :DIGital modes and commands described in this chapter include:

e DISPlay

e LABel

e SIZE

e THReshold

13-2

Digital Commands
DISPlay

Command

<N>

Example

Query

Returned Format

DISPlay

| The DIGital commands only apply to the MSO Oscilloscopes.

:DIGital<N>[:DISPlay] {ON | OFF | 1 | 0}

The :DIGital<N>:DISPlay command enables or disables the view for the selected
digital channel. The digital subsystem must be enabled before this command
will work. See ENABIle command in the root subsystem.

An integer, 0 - 15.

This example turns on the display of bit 5 for the digital channels.

10 Output 707;”ENABLE DIGITAL”
20 Output 707; "DIGITAL5:DISPLAY ON”
30 END

:DIGital<N>[:DISPlay]?

The :DIGital<N>:DISPlay? query returns the value of the display setting for the
selected digital channel.

[:DIGital<N>:DISPlay] {1 | O0}<NL>

13-3

Digital Commands
LABel

LABel

| The DIGital commands only apply to the MSO Oscilloscopes.

Command :DIGital<N>:LABel <qgquoted_string>

The :DIGital<N>:LABel command sets the digital channel label to the quoted
string. Setting a label for a digital channel will also result in the name being
added to the label list.

Label strings are 16 characters or less, and may contain any commonly used ASCII
characters. Labels with more than 16 characters are truncated to 16 characters.

<N> Aninteger, 1 - 2.

<quoted_string> A series of 6 or less characters as a quoted ASCII string.

Example This example sets the label for bit 7 to Clock.
10 Output 707;”:DIGital7:LABel ““Clock”””
20 END

Query :DIGital<N>:LABel?

The :DIGital<N>:LABel? query returns the name of the specified digital
channel.

Return format [:DIGital<N>:LABel] <quoted_string><NL>

13-4

Digital Commands
SIZE

Command

<N>

Example

Query

Returned Format

SIZE

| The DIGital commands only apply to the MSO Oscilloscopes.

DIGital<N>:SIZE {SMALl | MEDium | LARGe}

The :DIGital<N>:SIZE command changes the vertical size of all the displayed
digital channels. The digital subsystem must be enabled before this command
will work. See ENABIe command in the root subsystem.

An integer, 0 - 15.

This example changes the size to medium for all displayed digital channels or
buses.

10 Output 707; "ENABLE DIGITAL”
20 Output 707;”DIGITALS5:SIZE MEDIUM”
30 END

:DIGital<N>:SIZE?

The :DIGital: CHANnel:SIZE? query returns the size of the displayed digital
channels.

[:DIGital<N>:SIZE] {SMAL1l | MEDium | LARGe}<NL>

13-5

Digital Commands
THReshold

Command

<N>

<value>

Example

THReshold

| The DIGital commands only apply to the MSO Oscilloscopes. |

:DIGital<N>:THReshold {CMOS50 | CMOS30 | CMOS25 |
ECL | PECL | TTL | <value>}

The :DIGital<N>:THReshold command sets the logic threshold value for a pod.

Setting the threshold for digital channels 0 through 7 sets the threshold for pod
1 while setting the threshold for digital channels 8 through 15 sets the threshold
for pod 2. This command is equivalent to the POD<N>:THReshold command.

The threshold is used for triggering purposes and for displaying the digital data
as high (above the threshold) or low (below the threshold). The voltage values
for the predefined thresholds are:

CMOS50=2.6V
CMOS30=1.65 V
CMOS256=1.256V

ECL=-13V
PECL=3.7V
TTL=14V

An integer, 0 - 15.

A real number representing the voltage value which distinguishes a 1 logic level
from a 0 logic level. Waveform voltages greater than the threshold are 1 logic
levels while waveform vlotages less than the threshold are 0 logic levels. The
range of the threshold voltage is from -8 volts to 8 volts.

This example sets the threshold to 5 volts for bits D15 through DS8.

10 Output 707;”DIGital8:THReshold 5”
20 END

13-6

Digital Commands
THReshold

Query :DIGital<N>:THREShold?

The :DIGital<N>:THReshold? query returns the threshold value for the
specified pod.

Return format [:DIGital<N>:THReshold] {CMOS50 | CMOS30 | CMOS25 | ECL |
PECL | TTL | <value>}<NL>

13-7

13-8

14

Disk Commands

Disk Commands

The DISK subsystem commands perform the disk operations as defined
in the File menu. This allows saving and loading of waveforms and
setups, as well as saving screen images to bitmap files.

Enclose File Name in Quotation Marks

When specifying a file name, you must enclose it in quotation marks.

Filenames are Not Case Sensitive.

The filename that you use is not case sensitive.

These DISK commands and queries are implemented in the Infiniium
Oscilloscopes:

e CDIRectory

e DELete

¢ DIRectory?

e LOAD

e MDIRectory

e PWD?

e SAVeIMAGe

e SAVe:LISTing

e SAVe:MEASurements
e SAVe:SETup

e SAVe:WAVeform

e SEGMented

14-2

Disk Commands
CDIRectory

Command

<directory>

Example

CDIRectory

:DISK:CDIRectory "<directory>"

The :DISK:CDIRectory command changes the present working directory to the
designated directory name. An error occurs when the requested directory does
not exist. You can then view the error with the :SYSTem:ERRor? [{NUMBer |
STRing}] query.

A character-quoted ASCII string, which can include the subdirectory
designation. You must separate the directory name and any subdirectories with
a backslash (V).

This example sets the present working directory to CASCOPE\DATA.

10 OUTPUT 707; " :DISK:CDIRECTORY ""C:\SCOPE\DATA"""
20 END

Directories Not Allowed

You can execute the command CDIR "A:\", but the following commands are not
allowed.

:DISK:CDIR “C\"
:DISK:CDIR “C:\SCOPE\BIN"
:DISK:CDIR “C\SCOPE\CAL"

If you attempt to execute CDIR using these directories an error message (-257) is
issued and the present working directory (PWD) is unchanged.

14-3

Disk Commands
DELete

Command

<file_name>

Example

DELete

:DISK:DELete "<file_name>"

The :DISK:DELete command deletes a file from the disk. An error is displayed
on the oscilloscope screen if the requested file does not exist. The default path
is C\SCOPE\DATA.

A character-quoted ASCII string which can include subdirectories with the
name of the file.

This example deletes FILE1.SET from the disk.

10 ouTPUT 707;":DISK:DELETE ""FILEl.SET"""
20 END

14-4

Disk Commands
DIRectory?

Query

<directory>

Returned Format

<n>

<directory>

Example

DIRectory?

:DISK:DIRectory? ["<directory>"]

The :DISK:DIRectory? query returns the requested directory listing. Each entry
is 63 bytes long, including a carriage return and line feed. The default path is
CASCOPE\DATA.

The list of filenames and directories.

[:DISK:DIRectory]<n><NL><directory>

The specifier that is returned before the directory listing, indicating the number
of lines in the listing.

The list of filenames and directories. Each line is separated by a <NL>.

This example displays a number, then displays a list of files and directories in
the current directory. The number indicates the number of lines in the listing.

10 DIM AS$[80]

20 INTEGER Num_of_lines

30 OUTPUT 707;":DISK:DIR?"
40 ENTER 707;Num_of_lines
50 PRINT Num_of_ lines

60 FOR I=1 TO Num_of_lines
70 ENTER 707;AS

80 PRINT AS

90 NEXT I

100 END

14-5

Disk Commands
LOAD

Command

<file_name>

<destination>

Example

LOAD

:DISK:LOAD "<file name>"[,<destination>]

The :DISK:LOAD command restores a setup or a waveform from the disk. The
type of file is determined by the filename suffix if one is present, or by the
destination field if one is not present. You can load .WFM, .CSV, .TSV, .TXT,
and .SET file types. The destination is only used when loading a waveform
memory.

A quoted ASCII string with a maximum of 254 characters including the entire
path name, if used. You can use either ' WFM, .CSV, .TSV, .TXT or .SET as a
suffix after the filename. If no file suffix is specified, the default is .wfm.

The present working directory is assumed, or you can specify the entire path.
For example, you can load the standard setup file "SETUPO.SET" using the
command:

:DISK:LOAD "CASCOPE\SETUPS\SETUP0.SET"

Or, you can use :DISK:CDIRectory to change the present working directory to
CASCOPENSETUPS, then just use the file name ("SETUPO.SET", for example).
The default path is CASCOPE\DATA.

WMEMory<N>.

Where <N> is an integer from 1-4.

If a destination is not specified, waveform memory 1 is used.

This example restores the waveform in FILE1.WFM to waveform memory 1.

10 OUTPUT 707;":DISK:LOAD ""FILEl.WFM"", WMEM1"
20 END

14-6

Disk Commands
MDIRectory

Command

<directory>

Example 1

Example 2

MDIRectory

:DISK:MDIRectory "<directory>"

The :DISK:MDIRectory command creates a directory in the present working
directory which has been set by the :DISK:CDIRectory command. If the present
working directory has not been set by the :DISK:CDIRectory command, you
must specify the full path in the <directory> parameter as shown in Example 1
below.

An error is displayed if the requested subdirectory does not exist.

A quoted ASCII string which can include subdirectories. You must separate the
directory name and any subdirectories with a backslash (\).

This example creates the directory CPROGRAMS in the CASCOPE\DATA
directory.

10 OUTPUT 707;":DISK:MDIRECTORY ""C:\SCOPE\DATA\CPROGRAMS"""
20 END

This example creates the directory CPROGRAMS in the present working
directory set by the :DISK:CDIRectory command.

10 OUTPUT 707;":DISK:MDIRECTORY ""CPROGRAMS"""
20 END

You can check your path with the :DISK:DIRectory? query.

14-7

Disk Commands
MSTore (Obsolete)

Command

<file_name>

<format>

<preamble>

Example

MSTore (Obsolete)

This command is obsolete but is provided to reduce rework for existing systems
and programs. Obsolete commands are not guaranteed to remain in future product
releases. New systems and programs should use the following new commands.

:SAVe:WAVeform

:DISK:MSTore "<file_name>",<format>,<preamble>

The :DISK:MSTore command saves one or more waveform sources to a file.
The number of waveform sources stored depends on the number of waveform
sources that turned on.

The filename does not include a suffix. The suffix is supplied by the
oscilloscope, depending on file format specified.

If a function is on that uses an FFT Magnitude, FFT Phase, or Versus math
operator or references another function that uses one of these math operators,
it will not be stored to the file.

For sources that are on, channels values are stored first, functions are stored
second, waveform memories are stored third, and digital channels are stored
last. Channels, functions, and waveform memories are store in the order of 1
to 4. Digital channels are stored from 1 to 16

A quoted ASCII string with a maximum of 254 characters including the entire
path name, if used. The filename assumes the present working directory if a
path does not precede the file name.

{CSV | BINary | TSV | XYPairs | YVALues}

The BINary format saves the preamble and data in a binary format which is
described in the on-line help system. The preamble and data columns in the
file are separated by commas for the CSV and XYPairs formats. All other formats
use tabs to separate the columns.

{ON | OFF}

This example stores four waveform data sources to FILE1 in comma separated
values with the preamble information turned off.

10 ouTPUT 707;":DISK:MSTORE ""FILEl"",CSV,OFF"
20 END

14-8

<preamble_
data>

<revision>

<type>

<start>

<points>

<count 1...n>

Disk Commands
MSTore (Obsolete)

Preamble Definition

<revision>

<type>

<start>

<points>

<count 1..n>

<X display range 1...n>
<X display origin 1...n>
<X increment 1...n>
<X origin 1..n>

<X units 1...n>

<Y display range 1...n>
<Y display origin 1...n>
<Y increment 1...n>
<Y origin 1..n>

<Y units 1...n>

<frame model #>
<date>

<time>

<max bandwidth limit>
<min bandwidth limit>

0
Always zero.

RAW type.
AVERage type.
VHIStogram.
HHIStogram.
INTerpolate.
DIGital.
PDETect.

0
Always zero.

The number of data points or data pairs contained in the waveform data.

The number of count columns (n) depends on the number of sources being
stored. Forthe AVERAGE waveform type, the count value is the fewest number
of hits for all time buckets. This value may be less than or equal to the value
requested with the :ACQuire:AVERage:COUNt command. For NORMAL, RAW,
and INTerpolate this value is O or 1.

14-9

<X display
range 1...n>

<X display
origin 1...n>

<X ilncrement
1...n>

<X origin
1...n>

<X units 1...n>

<Y display
range 1...n>

<Y display
origin 1...n>

<Y increment
1...n>

<Y origin
1...n>

<Y units 1...n>

Disk Commands
MSTore (Obsolete)

The number of X display range columns (n) depends on the number of sources
being stored. The X display range is the X-axis duration of the waveform that
is displayed. For time domain waveforms, it is the duration of time across the
display. If the value is zero then no data has been acquired.

The number of X display origin columns (n) depends on the number of sources
being stored. The X display origin is the X-axis value at the left edge of the
display. For time domain waveforms, it is the time at the start of the display.
This value is treated as a double precision 64-bit floating point number. If the
value is zero then no data has been acquired.

The number of X increment columns (n) depends on the number of sources
being store. The X increment is the duration between data points on the X axis.
For time domain waveforms, this is the time between points. If the value is zero
then no data has been acquired.

The number of X origin columns (n) depends on the number of sources being
store. The X origin is the X-axis value of the first data point in the data record.

For time domain waveforms, it is the time of the first point. This value is treated
as a double precision 64-bit floating point number. If the value is zero then no
data has been acquired.

The number of X units columns (n) depends on the number of sources being
store. The X unitsis the unit of measure for each time value of the acquired data.

The number of Y display range columns (n) depends on the number of sources
being store. The Y display range is the Y-axis duration of the waveform which
is displayed. For voltage waveforms, it is the amount of voltage across the
display. If the value is zero then no data has been acquired.

The number of Y display origin columns (n) depends on the number of sources
being store. The Y-display origin is the Y-axis value at the center of the display.
For voltage waveforms, it is the voltage at the center of the display. If the value
is zero then no data has been acquired.

The number of Y increment columns (n) depends on the number of sources
being store. The Y increment is the duration between Y-axis levels. For voltage
waveforms, it is the voltage corresponding to one level. If the value is zero
then no data has been acquired.

The number of Y origin columns (n) depends on the number of sources being
store. The Y origin is the Y-axis value at level zero. For voltage waveforms, it
is the voltage at level zero. If the value is zero then no data has been acquired.

The number of Y units columns (n) depends on the number of sources being
store. The Y units is the unit of measure of each voltage value of the acquired
waveform.

14-10

Disk Commands
MSTore (Obsolete)

<frame> A string containing the model number and serial number of the oscilloscope in
the format of MODEL#:SERIAL#.

<date> A string containing the date in the format of day, month, and year.

<time> A string containing the time in the format HH:MM:SS, where HH is the hour, 0
to 23, MM is the minutes, 0 to 59, and SS is the seconds, 0 to 59.

<max bandwidth The band pass consists of two values that are an estimation of the maximum
limit> and minimum bandwidth limits of the source waveform. The bandwidth limit
<min bandwidth is computed as a function of the selected coupling and filter mode.
limit>

14-11

Disk Commands
PWD?

PWD?

Query :DISK:PWD?

The :DISK:PWD? query returns the name of the present working directory
(including the full path). If the default has not been changed by the
:DISK:CDIRectory command, the DISK:PWD? query will return an empty string.

Returned Format :DISK:PWD? <present_working directory><NL>

Example This example places the present working directory in the string variable Wdir?,
then prints the contents of the variable to the computer’s screen.

10 DIM Wdir$[200]

20 OUTPUT 707;":DISK:PWD?"
30 ENTER 707; Wdirs$

40 PRINT Wdir$

50 END

14-12

Disk Commands
SAVe:IMAGe

Command

<file_name>

<format>

Examples

SAVe:IMAGe

:DISK:SAVe:IMAGe “<file name>" [,<format>
[, {SCReen |GRATicule}

[,{ON]|1} | {OFF|0}

[, {NORMal |INVert}]]1]]

The DISK:SAVe:IMAGe command saves a screen image in BMP, GIF, TIF, PNG,
or JPEG format. The extension is supplied by the oscilloscope depending on
the selected file format. If you do not include the format in the command, the
file is saved in the format which is shown in the Save Screen dialog box. The
default path is CASCOPE\DATA.

A quoted ASCII string with a maximum of 254 characters including the entire
path name, if used.

{BMP | GIF | TIF' | JPEG | PNG}

OUTPUT 707;":DISK:SAVE:IMAGE " "FILEl1" ",BMP, SCR,ON, INVERT"
or

OUTPUT 707;":DISK:SAVE:IMAGE " "FILEl" ",TIF,GRAT,ON"

or

OUTPUT 707;":DISK:SAVE:IMAGE " "FILE1l" " "

14-13

Disk Commands
SAVe:LISTing

Command

<file_name>

Example

SAVe:LISTing

:DISK:SAVe:LISTing "<file_name>"[, {CSV | TXT}]

The :DISK:SAVe:LISTing command saves the listing window for digital buses to
a disk. The listing window is only available on the 5483XD or MSO8000 series
oscilloscopes when a digital bus is enabled.

A quoted ASCII string with a maximum of 254 characters including the entire
path name, if used. The filename assumes the present working directory if a
path does not precede the file name. The default path is CASCOPE\DATA.

This example saves the digital list to LIST1 on the disk in the TSV format.

10 ouTPUT 707;":DISK:SAVE:LISTING ""LIST1"",TSV"
20 END

14-14

Disk Commands
SAVe:MEASurements

Command

SAVe:MEASurements

:DISK:SAVe:MEASurements “<file_name>"

The DISK:SAVe:MEASurements command saves the measurements shown in
the measurements tab at the bottom of the oscilloscope screen in a comma
seperated variables (CSV) file format. The csv extension is supplied by the
oscilloscope. The default path is CASCOPE\DATA.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire

Example

path name, if used.

OUTPUT 707;":DISK:SAVE:MEASURMENTS ""FILEL""

14-15

Disk Commands
SAVe:SETup

Command

<file_name>

Example

SAVe:SETup

:DISK:SAVe:SETup "<file_name>"

The :DISK:SAVe:SETup command saves the current oscilloscope setup to a
disk. The file will have a .set extension.

A quoted ASCII string with a maximum of 254 characters including the entire
path name, if used. The filename assumes the present working directory if a
path does not precede the file name. The default path is CASCOPE\SETUP.

This example saves the channel 1 waveform to SETUP1 on the disk.

10 OUTPUT 707;":DISK:SAVE:SETUP ""SEUP1"""
20 END

14-16

Disk Commands
SAVe:WAVeform

Command

<source>

<N>

POD1

POD2

PODALL

<file_name>

<format>

SAVe:WAVeform

:DISK:SAVe:WAVeform
<source>,<file_name>|[,<format>[,<header>]]

The :DISK:SAVe:WAVeform command saves a waveform to a disk. If the source
is ALL, all of the currently displayed waveforms are saved to the file. If you use
a file extension as shown below in the <format> variable, then the type of file
saved defaults to the extension type. If no format is specified and no extension
is used, the file is saved in the INTernal format.

See the :WAVeform:VIEW command to determine how much data is saved.
{ALL | BUS<N> | CHANnel<N> | CLOCk | FUNCtion<N> | HISTogram |
MTRend | MSPectrum | POD1 | POD2 | PODALL | WMEMory<N>}

The BUS<N>, POD1, POD2, and PODALL sources are only available on the
5483xD and MSO8000 series oscilloscopes.

MTRend and MSPectrum sources are only available if the oscilloscope has the
EZJIT option installed and the feature is enabled.

The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

An integer, 1-4

Bits 0 through 7 of the digital channels only available on the 5483xD and
MSO8000 series Infiniium oscilloscopes. Must use the BIN, CSV, INTernal, TSV,
or TXT format.

Bits 8 through 15 of the digital channels only available on the 5483xD and
MSO8000 series Infiniium oscilloscopes. Must use the BIN, CSV, INTernal, TSV,
or TXT format.

Bits 0 through 15 of the digital channels only available on the 5483xD and
MSO8000 series Infiniium oscilloscopes. Must use the BIN, CSV, INTernal, TSV,
or TXT format.

A quoted ASCII string with a maximum of 254 characters including the entire
path name, if used. The filename assumes the present working directory if a
path does not precede the file name. The default path is C:\SCOPE\DATA.
{BIN | CSV | INTernal | TSV | TXT}

CSV stands for comma seperated values and TSV stands for tab seperated
values. BUS<N> can only be saved in the CSV, TSV, or TXT formats.

The following file name extensions are used for the different formats.
BIN = file_name.bin

14-17

Disk Commands
SAVe:WAVeform

CSV = file_name.csv
INTernal = file_name.wfm
TSV = file_name.tsv
TXT = file_name.txt

<header> {{ON|1}|{OFF |0}

Example This example saves the channel 1 waveform to FILE1 on the disk in the CSV
format with header on.

10 OUTPUT 707;":DISK:SAVE:WAVEFORM CHANNEL1l, ""FILE1"",CSV,ON"
20 END

14-18

Disk Commands
CSV, TSV and TXT Header Format

CSV, TSV and TXT Header Format

Revision Always 0 (zero).

Type How the waveform was acquired: normal, raw,
interpolate, average, or versus. When this field
is read back into the scope, all modes, except
versus, are converted to raw. The default value
is raw.

Start Starting point in the waveform of the first data
point in the file. This is usually zero.

Points The number of points in the waveform record.
The number of points is set by the Memory
Depth control. The default value is 1.

Count or Segments For count, it is the number of hits at each time
bucket in the waveform record when the
waveform was created using an acquisition
mode like averaging. For example, when
averaging, a count of four would mean every
waveform data point in the waveform record has
been averaged at least four times. Count is
ignored when it is read back into the scope. The
default value is 0.

Segmentsis usedinstead of Count when the data
is acquired using the Segmented acquisition
mode. This number is the total number of
segments that were acquired.

XDispRange The number of X display range columns (n)
depends on the number of sources being stored.
The X display range is the X-axis duration of the
waveform that is displayed. For time domain
waveformes, it is the duration of time across the
display. If the value is zero then no data has
been acquired.

14-19

Disk Commands

CSV, TSV and TXT Header Format

XDispOrg

XInc

XOrg

XUnits

YDispRange

YDispOrg

The number of X display origin columns (n)
depends on the number of sources being stored.
The X display origin is the X-axis value at the left
edge of the display. For time domain waveform:s,
itisthe time at the start of the display. This value
is treated as a double precision 64-bit floating
point number. If the value is zero then no data
has been acquired.

The number of X increment columns (n)
depends on the number of sources being store.
The X increment is the duration between data
points on the X axis. For time domain
waveforms, this is the time between points. If
the value is zero then no data has been acquired.

The number of X origin columns (n) depends on
the number of sources being store. The X origin
is the X-axis value of the first data point in the
data record. For time domain waveforms, it is
the time of the first point. This value is treated
as a double precision 64-bit floating point
number. If the value is zero then no data has
been acquired.

The number of X units columns (n) depends on
the number of sources being store. The X units
is the unit of measure for each time value of the
acquired data.

The number of Y display range columns (n)
depends on the number of sources being store.
The Y display range is the Y-axis duration of the
waveform which is displayed. For voltage
waveformes, it is the amount of voltage across the
display. Ifthe valueis zero then no datahas been
acquired.

The number of Y display origin columns (1)
depends on the number of sources being store.
The Y-display origin is the Y-axis value at the
center of the display. For voltage waveforms, it
is the voltage at the center of the display. If the
value is zero then no data has been acquired.

14-20

YInc

YOrg

YUnits

Frame

Date

Time

Max bandwidth

Min bandwidth

Digital Source

Digital Activity

Digital Enabled

Disk Commands
CSV, TSV and TXT Header Format

The number of Y increment columns (n)
depends on the number of sources being store.
The Y increment is the duration between Y-axis
levels. For voltage waveforms, it is the voltage
corresponding to one level. If the value is zero
then no data has been acquired.

The number of Y origin columns (n) depends on
the number of sources being store. The Y origin
is the Y-axis value at level zero. For voltage
waveforms, it is the voltage at level zero. If the
value is zero then no data has been acquired.

The number of Y units columns (n) depends on
the number of sources being stored. The Y units
is the unit of measure of each voltage value of
the acquired waveform.

A string containing the model number and serial
number of the scope in the format of
MODEL#:SERIAL#.

The date when the waveform was acquired. The
default value is 27 DEC 1996.

The time when the waveform was acquired. The
default value is 01:00:00:00.

An estimation of the maximum bandwidth of the
waveform. The default value is 0.

An estimation of the minimum bandwidth of the
waveform. The default value is 0.

Shows the digital channels that were selected
when the waveform was saved.

Shows the digital channels that have activity on
them. A 1 indicates that the digital channel has
activity. A 0 indicates that the digital channel
has no activity.

Shows the digital channels that are being
displayed. A 1indicatesthat the channelis being
displayed. A 0 indicates that the channel is not
being displayed.

14-21

Disk Commands
CSV, TSV and TXT Header Format

Time Tags The Time Tags only occur when the data was
acquired using the Segmented acquisition mode
with time tags enabled and the file format is
TXT. The number of columns depends on the
number of Segments being saved.

Data The data values follow this header entry.

14-22

Disk Commands
BIN Header Format

BIN Header Format

File Header

There is only one file header in a binary file. The file header consists of the

following information.
Cookie

Version

File Size

Number of
Waveforms

Waveform Header
The waveform header

Two byte characters, AG, which indicates that
the file is in the Agilent Binary Data file format.

Two bytes which represent the file version.

Aninteger (4 byte signed) which is the number
of bytes that are in the file.

Aninteger (4 byte signed) which is the number
of waveforms that are stored in the file.

contains information about the type of waveform data

that is stored following the waveform data header which is located after each
waveform header. Because it is possible to store more than one waveform in
the file, there will be a waveform header and a waveform data header for each

waveform.

Header Size

Waveform Type

Number of
Waveform Buffers

An integer (4 byte signed) which is the number
of bytes in the header.

An integer (4 byte signed) which is the type of
waveform that is stored in the file. The follow
shows what each value means.

0 = Unknown

1 = Normal

2 = Peak Detect

3 = Average

4 = Horizontal Histogram
5 = Vertical Histogram

6 = Logic

Aninteger (4 byte signed) which is the number
of waveform buffers required to read the data.

14-23

Disk Commands
BIN Header Format

Count

X Display Range

X Display Origin

X Increment

X Origin

This value is one except for peak detect data and
digital data.

Aninteger (4 byte signed) which is the number
of hits at each time bucket in the waveform
record when the waveform was created using an
acquisition mode like averaging. For example,
when averaging, a count of four would mean
every waveform data point in the waveform
record has been averaged at least four times.
The default value is 0.

A float (4 bytes) which is the X-axis duration of
the waveform that is displayed. For time domain
waveformes, it is the duration of time across the
display. If the value is zero then no data has
been acquired.

A double (8 bytes) which is the X-axis value at
the left edge of the display. For time domain
waveforms, it is the time at the start of the
display. This value is treated as a double
precision 64-bit floating point number. If the
value is zero then no data has been acquired.

A double (8 bytes) which is the duration
between data points on the X axis. For time
domain waveforms, this is the time between
points. If the value is zero then no data has been
acquired.

A double (8 bytes) which is the X-axis value of
the first data point in the data record. For time
domain waveforms, it is the time of the first
point. This value is treated as a double precision
64-bit floating point number. If the value is zero
then no data has been acquired.

14-24

X Units

Y Units

Date

Time

Frame

Waveform Label

Time Tags

Disk Commands
BIN Header Format

An integer (4 byte signed) which is the number
of X units columns (n) depends on the number
of sources being store. The X units is the unit of
measure for each time value of the acquired
data. X unit definitions are:

0 = Unkown
1 =Volt

2 = Second
3 = Constant
4 = Amp

5 = Decibel

Aninteger (4 byte signed) which is the number
of Y units columns (n) depends on the number
of sources being store. The Y units is the unit of
measure of each voltage value of the acquired
waveform. Y units definitions are:

0 = Unkown
1 =Volt

2 = Second
3 = Constant
4 = Amp

5 = Decibel

A 16 character array which is the date when the
waveform was acquired. The default value is 27
DEC 1996.

A 16 character array which is the time when the
waveform was acquired. The default value is
01:00:00:00.

A 24 character array which is the model number
and serial number of the scope in the format of
MODEL#:SERIAL#.

A 16 character array which is the waveform
label.

A double (8 bytes) which is the time tag value of
the segment being saved.

14-25

Disk Commands
BIN Header Format

Segment Index

Waveform Data
Header

Waveform Data
Header Size

Buffer Type

Bytes Per Point

Buffer Size

Anunsigned integer (4 byte signed) whichis the
segment index of the data that follows the
waveform data header.

The waveform data header consists of
information about the waveform data points that
are stored immediately after the waveform data
header.

An integer (4 byte signed) which is the size of
the waveform data header.

A short (2 byte signed) which is the type of
waveform data that is stored in the file. The
following shows what each value means.

0 = Unknown data

1 = Normal 32 bit float data

2 = Maximum float data

3 = Minimum float data

4 = Time float data

5 = Counts 32 bit float data

6 = Digital unsigned 8 bit char data

A short (2 byte signed) which is the number of
bytes per data point.

An integer (4 byte signed) which is the size of
the buffer required to hold the data bytes.

14-26

Disk Commands
BIN Header Format

Example Program for Reading Binary Data

The following is a programming example of reading a Binary Data (.bin) file and
converting it to an XYPairs (.csv) file without a file header.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>
//***

//
// Description: This file is broken into three sections

// Section 1: Data Structures to describe Infiniium Public Waveform File
// Section 2: Functions to correctly read .bin files
// Section 3: Functions to convert a .bin file to .csv file

//***

//
// Description: Structures and Enumerations to describe Infiniium

// Public Waveform File - using these structures assumes
// a 32-Bit x86 Compiler
//

typedef struct
{

char Cookie[2];

char Version[2];

int FileSize;

int NumberOfWaveforms;
} tPBFileHeader;

const char PB_COOKIE[2] = {'A', 'G'};
const char PB_VERSIONI[2] = {'1', '0'};

#define DATE_TIME_STRING_LENGTH 16
#define FRAME_STRING_LENGTH 24
#define SIGNAL_STRING_LENGTH 16

typedef struct
{

int HeaderSize;

int WaveformType;

int NWaveformBuffers;
int Points;

int Count;

float XDisplayRange;

double XDisplayOrigin;

double XIncrement;

double XOrigin;

int XUnits;

int YUnits;

char Date[DATE_TIME_STRING_LENGTH] ;

14-27

Disk Commands
BIN Header Format

char Time[DATE_TIME_STRING_LENGTH] ;
char Frame [FRAME_STRING_LENGTH] ;
char WaveformLabel [SIGNAL_STRING_LENGTH] ;
double TimeTag;
unsigned int SegmentIndex;

} tPBWaveformHeader;

typedef struct

{
int HeaderSize;
short BufferType;
short BytesPerPoint;
int BufferSize;

} tPBWaveformDataHeader;

typedef enum

{
PB_UNKNOWN,
PB_NORMAL,
PB_PEAK_DETECT,
PB_AVERAGE,
PB_HORZ_HISTOGRAM,
PB_VERT_HISTOGRAM,
PB_LOGIC

} ePBWaveformType;

typedef enum

{
PB_DATA_UNKNOWN,
PB_DATA_NORMAL,
PB_DATA_MAX,
PB_DATA_MIN,
PB_DATA_TIME,
PB_DATA_COUNTS,
PB_DATA_LOGIC

} ePBDataType;

14-28

Disk Commands
BIN Header Format

//***

//
//
//
//
//
//
//
//
//
//
//

Description: The next set of functions:

ReadWaveformHeader
ReadWaveformDataHeader
ReadLogicWaveform
ReadAnalogWaveform
ReadHistogramWaveform
IgnoreWaveformData

Demostrate how to correctly read the Infiniium Public Waveform file with an
eye to compatibility with future format changes.
Returns 0 if unsucessful.

int ReadWaveformHeader (FILE* inputFile, tPBWaveformHeader* waveformHeader)

{

char* headerBuffer;

i

nt

success, headerSize;

// Assume we'll fail
success = 0;

if

{

}

(waveformHeader)

// read in header size
headerSize = 0;

fread (&headerSize, 1, sizeof (headerSize), inputFile);
// create header buffer

headerBuffer = (char*) malloc (headerSize) ;

if (headerBuffer)

{

// rewind back the headerSize
fseek (inputFile, - (int) (sizeof (headerSize)), SEEK_CUR) ;
// Now read in the entire header
fread (headerBuffer, 1, headerSize, inputFile);
// Now set dataHeader from headerBuffer
// any extra information stored in the file
// will be ignored
memcpy ((char*) waveformHeader, headerBuffer, sizeof (tPBWaveformHeader)) ;
success = 1;
// Just 1is case WaveformType has been enhanced
if (waveformHeader->WaveformType > PB_LOGIC)
{
waveformHeader->WaveformType = PB_UNKNOWN;
}
// Done with headerBuffer
free (headerBuffer) ;

return success;

14-29

Disk Commands
BIN Header Format

// Returns 0 if not sucessful

int ReadWaveformDataHeader (FILE* inputFile,
tPBWaveformDataHeader* dataHeader)

{
char* headerBuffer;
int success, headerSize;
// Assume we'll fail
success = 0;
if (dataHeader)
{

// read in header size
headerSize = 0;

fread(&headerSize, 1, sizeof (headerSize), inputFile);
// create header buffer
headerBuffer = (char*) malloc (headerSize) ;

if (headerBuffer)
{
// rewind back the headerSize
fseek (inputFile, - (int) (sizeof (headerSize)), SEEK_CUR) ;
// Now read in the entire header
fread (headerBuffer, 1, headerSize, inputFile);
// Now set dataHeader from headerBuffer
// any extra information stored in the file
// will be ignored

memcpy ((char*) dataHeader, headerBuffer, sizeof (tPBWaveformDataHeader)) ;

success = 1;
// Just is case WaveformType has been enhanced
if (dataHeader->BufferType > PB_DATA_LOGIC)
{
dataHeader->BufferType = PB_DATA_UNKNOWN;
}
// Done with headerBuffer
free (headerBuffer) ;

}

return success;

14-30

Disk Commands
BIN Header Format

// Returns a buffer pointing the logic data read in if successful
// the client will be responisble for freeing the buffer

unsigned char* ReadLogicWaveform(FILE* inputFile,
const tPBWaveformHeader* waveformHeader)

tPBWaveformDataHeader dataHeader;
unsigned char* pLogicData = NULL;
if (ReadWaveformDataHeader (inputFile, &dataHeader) && waveformHeader)
{
// Make sure everything is the expected format
int actualNumberOfPoints;
actualNumberOfPoints = dataHeader.BufferSize / dataHeader.BytesPerPoint;

if ((dataHeader.BytesPerPoint == 1) &&
(dataHeader.BufferType == PB_DATA_LOGIC) &&
(actualNumberOfPoints == waveformHeader->Points))

// Now let's read in the logic data
pLogicData =(unsigned char*) malloc (dataHeader.BufferSize) ;
if (pLogicData)
{
fread(pLogicData, 1, dataHeader.BufferSize, inputFile);

if (pLogicData == NULL)

// ignore dataHeader.BufferSize because we either
// did not allocate LogicData or we do not

// recognize the data format

fseek (inputFile, dataHeader.BufferSize, SEEK_CUR) ;

}

return pLogicData;

14-31

Disk Commands
BIN Header Format

// If bufferType != NULL, bufferType will be set.
// Returns a buffer with the analog data read in if successful
// the client will be responisble for freeing the buffer.

float* ReadAnalogWaveform(FILE* inputFile,
const tPBWaveformHeader* waveformHeader,
ePBDataType* bufferType)

tPBWaveformDataHeader dataHeader;
float* pWaveformData = NULL;
if (ReadWaveformDataHeader (inputFile, &dataHeader) && waveformHeader)
{
// Make sure everything is the expected format
int actualNumberOfPoints;
int validDataType;
actualNumberOfPoints = dataHeader.BufferSize / dataHeader.BytesPerPoint;

validDataType = (dataHeader.BufferType == PB_DATA NORMAL) ||
(dataHeader.BufferType == PB_DATA_MIN) ||
(dataHeader .BufferType == PB_DATA_MAX) ;

if (bufferType != NULL)
{
*bufferType = dataHeader.BufferType;

if ((dataHeader.BytesPerPoint == 4) && validDataType &&
(actualNumberOfPoints == waveformHeader->Points))

// Now let's read in the data

pWaveformData =(float*) malloc (dataHeader.BufferSize);
if (pwWaveformbData)

{

fread (pWaveformbData, 1, dataHeader.BufferSize, inputFile);

if (pWaveformData == NULL)

// ignore dataHeader.BufferSize because we either
// did not allocate WaveformData or we do not
// recognize the data format
fseek (inputFile, dataHeader.BufferSize, SEEK_CUR);
if (bufferType != NULL)
{

*bufferType = PB_DATA_UNKNOWN;

}

return pWaveformData;

14-32

Disk Commands
BIN Header Format

// Returns a buffer with the histogram counts data read in if successful
// the client will be responisble for freeing the buffer

int* ReadHistogramWaveform(FILE* inputFile,

const tPBWaveformHeader* waveformHeader)

int* pHistogramData = NULL;
tPBWaveformDataHeader dataHeader;

if

{

}

(ReadWaveformDataHeader (inputFile, &dataHeader) && waveformHeader)

// Make sure everything is the expected format
int actualNumberOfPoints;
actualNumberOfPoints = dataHeader.BufferSize / dataHeader.BytesPerPoint;

if ((dataHeader.BytesPerPoint == 4) &&
(dataHeader .BufferType == PB_DATA_COUNTS) &&
(actualNumberOfPoints == waveformHeader->Points))
{

// Now let's read in the histogram count data
int* pHistogramData =(int*) malloc (dataHeader.BufferSize) ;
if (pHistogramData)
{
fread (pHistogramData, 1, dataHeader.BufferSize, inputFile);

if (pHistogramData == NULL)

// ignore dataHeader.BufferSize because we either
// did not allocate pHistogramData or we do not

// recognize the data format

fseek (inputFile, dataHeader.BufferSize, SEEK_CUR) ;

return pHistogramData;

14-33

Disk Commands
BIN Header Format

// Moves the file forward past the current waveform data record
// including the data described.
// Returns 0 if not sucessful

int IgnoreWaveformData (FILE* inputFile)
{
int success = 0;
tPBWaveformDataHeader dataHeader;
if (ReadWaveformDataHeader (inputFile, &dataHeader))
{
fseek (inputFile, dataHeader.BufferSize, SEEK_CUR) ;
success = 1;
}
return success;
}
//***
//
// Description: The next set of functions demostrate how to use the above
// functions of waveformHeader to generate a CSV file suitable for reading
// 1nto a spreadsheet application
//
double ComputeTimeFromIndex (int index, const tPBWaveformHeader* waveformHeader)
{

return ((double) index * waveformHeader->XIncrement) + waveformHeader->XOrigin;

int OutputNormalData (FILE* inputFile,
const tPBWaveformHeader* waveformHeader,
FILE* outputFile)

int success = 0;
float* waveformData = ReadAnalogWaveform(inputFile, waveformHeader, NULL) ;
if (waveformData)

{
// Output Time and Voltage Data
int 1i;
for (1 = 0; 1 < waveformHeader->Points; ++1)
{
double time = ComputeTimeFromIndex (i, waveformHeader) ;
fprintf (outputFile, "%e, %$f\n", time, waveformDatal[i]);
}
success = 1;
// Client is responible for cleanup
free (waveformbData) ;
}

return success;

14-34

Disk Commands
BIN Header Format

int OutputLogicData (FILE* inputFile,

const tPBWaveformHeader* waveformHeader,
FILE* outputFile)

int success = 0;

if

{

(waveformHeader->NWaveformBuffers == 2)

// Two Pods stored

unsigned char* podDatal ReadLogicWaveform(inputFile, waveformHeader) ;
unsigned char* podData2 = ReadLogicWaveform(inputFile, waveformHeader) ;
if (podDatal && podDatal)

{

// Output Time and Logic Data

int 1i;

for (i = 0; 1 < waveformHeader->Points; ++1)

{
double time = ComputeTimeFromIndex (i, waveformHeader) ;
fprintf (outputFile, "%e, %x%x\n", time, podData2[i], podDatall[il]);

}

success = 1;

// Client is responsible for freeing memory

free (podDatal) ;

free (podData2) ;

}
else
{
// Only a single pod
unsigned char* podData = ReadLogicWaveform(inputFile,
waveformHeader) ;
if (podData)
{
// Output Time and Logic Data
int 1i;
for (i = 0; 1 < waveformHeader->Points; ++1)
{
double time = ComputeTimeFromIndex (i, waveformHeader) ;
fprintf (outputFile, "%e, %x\n", time, podDatalil);
}
success = 1;
// Client is responsible for freeing memory
free (podData) ;
}
}

return success;

14-35

Disk Commands
BIN Header Format

int OutputHistogramData (FILE* inputFile,
const tPBWaveformHeader* waveformHeader,
FILE* outputFile)

int success = 0;
int* histogramData = ReadHistogramWaveform(inputFile, waveformHeader) ;
if (histogrambData)
{
// Output Time and Count Data
int 1i;
for (i = 0; 1 < waveformHeader->Points; ++1)
{
double time = ComputeTimeFromIndex (i, waveformHeader) ;
fprintf (outputFile, "%e, %i\n", time, histogrambDatal[i]);
}
success = 1;
// Client is responible for cleanup
free (histogrambData) ;
}

return success;

14-36

int Ou

int
flo
flo
flo
ePB

minData = maxData =
tempData

if
{

}

els

{

}
//

tputPeakDetectData (FILE*
const
FILE*

inputFile,

outputFile)

success 0;

minData;

at* maxData;

at* tempData;

DataType bufferType;

NULL;
ReadAnalogWaveform(inputFile,

(bufferType == PB_DATA_MIN)

at>*

minData
maxData

tempData;
ReadAnalogWaveform (inputFile,
e if (bufferType == PB_DATA_MAX)

maxData
minData

tempData;
ReadAnalogWaveform (inputFile,

(maxData && minData)

// Output Time and Voltage Data
int i;
for (i

{

0; i1 < waveformHeader->Points;

double time =

fprintf (outputFile, "%e, %f, %$f\n",

}

success

1;

Client is responible for cleanup

free (minData) ;
free (maxData) ;
return success;

waveformHeader,

ComputeTimeFromIndex (i,
time,

Disk Commands
BIN Header Format

tPBWaveformHeader* waveformHeader,

S&bufferType) ;

waveformHeader, &bufferType) ;

waveformHeader, &bufferType);

++1)

waveformHeader) ;

minDatal[i], maxDatalil);

14-37

Disk Commands
BIN Header Format

void OutputSummary (const tPBWaveformHeader* waveformHeader, FILE* outputFile)
{
static const char* waveformTable[] =
{
"PB_UNKNOWN",
"PB_NORMAL",
"PB_PEAK_DETECT",
"PB_AVERAGE",
"PB_HORZ_HISTOGRAM",
"PB_VERT_HISTOGRAM",
"PB_LOGIC"
Y
fprintf (outputFile, "%s, %s, ",
waveformHeader->WaveformLabel,
waveformTable[waveformHeader->WaveformTypel) ;
// Segmented Memory waveforms will have a SegmentIndex > 1
if (waveformHeader->SegmentIndex > 0)
{
fprintf (outputFile, "%d, ", waveformHeader->SegmentIndex) ;
}
fprintf (outputFile, "%d, %s, %s, %s\n",
waveformHeader->Points,
waveformHeader->Frame,
waveformHeader->Date,
waveformHeader->Time) ;

14-38

Disk Commands
BIN Header Format

int SummarizeWaveform(FILE* inputFile, FILE* outputFile)
{

int success = 0;

int w;

tPBWaveformHeader waveformHeader;

if (ReadWaveformHeader (inputFile, &waveformHeader))

{
// write out basic summary
OutputSummary (&waveformHeader, outputFile) ;
// ignore the waveform data
for (w = 0; w < waveformHeader.NWaveformBuffers; ++w)
{
success = IgnoreWaveformData (inputFile) ;
}
}

return success;

14-39

int OutputWaveform(FILE* inputFile, FILE* outputFile)

{

int success = 0;

int w;

tPBWaveformHeader waveformHeader;
(ReadWaveformHeader (inputFile, &waveformHeader))

if

{

}

// write out basic summary

//OutputSummary (&waveformHeader, outputFile);
// write out waveform data

switch (waveformHeader .WaveformType)

{

case PB_NORMAL:

case PB_AVERAGE:
success = OutputNormalData (inputFile, &waveformHeader, outputFile);
break;

case PB_PEAK_DETECT:

success = OutputPeakDetectData (inputFile, &waveformHeader, outputFile);
break;

case PB_HORZ_HISTOGRAM:

case PB_VERT_HISTOGRAM:

success = OutputHistogramData (inputFile, &waveformHeader, outputFile);

break;

case PB_LOGIC:
success = OutputLogicData (inputFile, &waveformHeader, outputFile);
break;

default:

case PB_UNKNOWN :
for(w = 0; w < waveformHeader .NWaveformBuffers; ++w)
{

IgnoreWaveformData (inputFile) ;

}

break;

return success;

14-40

int main(int argc,

{

char** argv)

FILE* inputFile;

if
{

}

inputFile = fopen(argv[l],

if
{

(argc < 2)

printf ("binToAscii <input file> <output file 1>
return 0;

"rb") ;
(inputFile)

tPBFileHeader fileHeader;
fread((char*) &fileHeader, 1,
// verify cookie

sizeof (fileHeader) ,

Disk Commands
BIN Header Format

<output file n>\n");

inputFile) ;

if (fileHeader.Cookie[0] == PB_COOKIE[0] &&
fileHeader.Cookie[l] == PB_COOKIE[1l])
{
int w;
if ((argc - 2) < fileHeader.NumberOfWaveforms)
{
// Not enough output files were provided
// Use stdout to summarize input file
printf ("Infiniium Public Waveform File version %c.%c\n",
fileHeader.Version[0],
fileHeader.Version[1]) ;
for (w = 0; w < fileHeader.NumberOfWaveforms; ++w)
{
SummarizeWaveform(inputFile, stdout);
}
}
else
{
for (w = 0; w < fileHeader.NumberOfWaveforms; ++w)
{
FILE* outputFile = fopen(argviw + 217,
if (outputFile)
{
OutputWaveform(inputFile, outputFile);
fclose (outputFile) ;
}
else
{
printf ("Unable to open %s\n", argv[w + 2]);
}
}
}
}
else

14-41

Disk Commands
BIN Header Format

{
printf ("Invalid Infiniium Public Waveform File\n");

}
fclose(inputFile) ;
}
else
{
printf ("Unable to open %s\n", argv[l]);

}

return O;

14-42

Disk Commands
SEGMented

Command

Example

Query

Returned Format

Example

SEGMented

:DISK:SEGMented {ALL | CURRent}

The :DISK:SEGMented command sets whether all segments or just the current
segment are saved to a file when the :DISK:STORe command is issued and the
source is a channel but not a waveform memory or function. Before segments
can be saved, the :ACQuire:MODE must be set to the SEGMented mode and
segments must be acquired.

This example sets the disk segmented memory store method to CURRent.

10 OUTPUT 707;":DISK:SEGMENTED CURRENT"”
20 END

:DISK:SEGMented?

The :DISK:SEGMented? query returns disk segmented memory store method
value.

[:DISK:SEGMented] {ALL | CURRent}<NL>

This example places the disk store method in the string variable Method$, then
prints the contents of the variable to the computer’s screen.

10 DIM Methods$[200]

20 OUTPUT 707;" :DISK:SEGMENTED?"
30 ENTER 707; Methods

40 PRINT Method$

50 END

14-43

Disk Commands
STORe (Obsolete)

Command

<source>

<N>

POD1

POD2

PODALL

<file_name>

<format>

STORe (Obsolete)

This command is obsolete but is provided to reduce rework for existing systems
and programs. Obsolete commands are not guaranteed to remain in future product
releases. New systems and programs should use the following new commands.

:SAVe:SETup
:SAVe:WAVeform

:DISK:STORe {<source> | POD1 | POD2 |
PODALL}, "<file _name>" [,<format>]

The :DISK:STORe command saves a setup or a waveform to a disk. The filename
does not include a suffix. The suffix is supplied by the oscilloscope, depending
on the source and file format specified. The :WAVeform:VIEW command
determines the maximum range of waveform data that can be saved to a file.
See the :WAVeform:VIEW command for more information.

{CHANnel<N> | FUNCtion<N> | HISTogram | WMEMory<N> | SETup}

For CHANnel<N>:

An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

For FUNCtion<N> and WMEM<N>:
An integer, 1 - 4, representing the function or waveform memory number.

Bits 0 through 7 of the digital channels only available on the 5483xD Infiniium
oscilloscopes. Must use the TEXT format.

Bits 8 through 15 of the digital channels only available on the 5483xD Infiniium
oscilloscopes. Must use the TEXT format.

Bits 0 through 15 of the digital channels only available on the 5483xD Infiniium
oscilloscopes. Must use the TEXT format.

A quoted ASCII string with a maximum of 254 characters including the entire
path name, if used. The filename assumes the present working directory if a

path does not precede the file name. The default path for the SETup source is
CASCOPENSETUPS. The default path for all other sources is CA\SCOPE\DATA.

{INTernal}
or

{TEXT {,YVALues | VERBose | XYPairs | CSV | BIN |
TSV|[,<preamble>[,<start>[,<size>]]]}}

14-44

Disk Commands
STORe (Obsolete)

<preamble> {ON | OFF}

<start> An integer value which is the starting point in memory where you want the
STORe command to beginning saving data to a file. The minimum value is 0
and the maximum value depends on the maximum memory depth.

<size> Aninteger value which is the amount of data in memory that you want to save
to a file. The minimum value is 0 and the maximum value depends on the
maximum memory depth.

Example This example stores the current oscilloscope setup to FILE1 on the disk.
10 OUTPUT 707;":DISK:STORE SETUP,""FILEL"""
20 END

14-45

Disk Commands
STORe (Obsolete)

14-46

15

Display Commands

Display Commands

The DISPlay subsystem controls the display of data, text, and graticules,
and the use of color.

These DISPlay commands and queries are implemented in the Infiniium
Oscilloscopes:

e CGRade

¢ CGRade:LEVels?

e COLumn

e CONNect

e DATA?

e DCOLor (Default COLor)
e GRATicule

e LABel

e LINE

e PERSistence

e ROW

e SCOLor (Set COLor)

e STRing

e TEXT

15-2

Display Commands
CGRade

Command

Example

CGRade

:DISPlay:CGRade {{ON | 1 | CcG} | {OFF | 0 | N}}

The :DISPlay:CGRade command sets the color grade persistence on or off.

When in the color grade persistence mode, all waveforms are mapped into a
database and shown with different colors representing varying number of hits
inapixel. "Connected dots" display mode (:DISPlay:CONNect) is disabled when
the color grade persistence is on.

The oscilloscope has three features that use a specific database. This database
uses a different memory area than the waveform record for each channel. The
three features that use the database are histograms, mask testing, and color
grade persistence. When any one of these three features is turned on, the
oscilloscope starts building the database. The database is the size of the
graticule area and varies in size. Behind each pixel is a 21-bit counter. Each
counter is incremented each time a pixel is hit by data from a channel or
function. The maximum count (saturation) for each counteris 2,097,151. You
can check to see if any of the counters is close to saturation by using the
DISPlay:CGRade:LEVels? query. The color grade persistence uses colors to
represent the number of hits on various areas of the display. The default
color-grade state is off.

This example sets the color grade persistence on.

10 OUTPUT 707;":DISPLAY:CGRADE ON"
20 END

15-3

Query

Returned Format

Example

Display Commands
CGRade

:DISPlay:CGRade?

The DISPlay:CGRade query returns the current color-grade state.

[:DISPlay:CGRade] {CG | N}<NL>

This example returns the current color grade state.

10
20
30
40
50

DIM Setting$[50] 'Dimension variable
OUTPUT 707; " :DISPLAY:CGRADE?"

ENTER 707;Cgrades$

PRINT Cgrade$

END

15-4

Display Commands
CGRade:LEVels?

CGRade:LEVels?

Query :DISPlay:CGRade:LEVels?

The :DISPlay:CGRade:LEVels? query returns the range of hits represented by
each color. Fourteen values are returned, representing the minimum and
maximum count for each of seven colors. The values are returned in the
following order:

e White minimum value
e White maximum value
e Yellow minimum value
¢ Yellow maximum value
e Orange minimum value
¢ QOrange maximum value
¢ Red minimum value

¢ Red maximum value

e Pink minimum value

¢ Pink maximum value

e Blue minimum value

e Blue maximum value

e (Green minimum value
¢ Green maximum value

Returned Format [DISPlay:CGRade:LEVels] <color format><NL>

<color format> <intensity color min/max> is an integer value from 0 to 2,076,151

15-5

Example

Display Commands
CGRade:LEVels?

This example gets the range of hits represented by each color and prints it on
the computer screen:

10
20
30
40
50

DIM Setting$[50] 'Dimension variable
OUTPUT 707; " :DISPLAY:CGRADE:LEVELS?"

ENTER 707;Cgrades

PRINT Cgrade$

END

Colors start at green minimum, maximum, then blue, pink, red, orange, yellow,
white. The format is a string where commas separate minimum and maximum
values. The largest number in the string can be 2,076,151

An example of a possible returned string is as follows:
1,414,415,829,830,1658,1659,3316,3317,6633,6634,13267,13268,26535

15-6

Display Commands
COLumn

Command

COLumn

:DISPlay:COLumn <column_number>

The :DISPlay:COLumn command specifies the starting column for subsequent
:DISPlay:STRing and :DISPlay:LINE commands.

<column An integer representing the starting column for subsequent :DISPlay:STRing

_number>

Example

Query

Returned Format

Example

and :DISPlay:LINE commands. The range of values is 0 to 90.

This example sets the starting column for subsequent :DISPlay:STRing and
:DISPlay:LINE commands to column 10.

10 OUTPUT 707;":DISPLAY:COLUMN 10"
20 END

:DISPlay:COLumn?

The :DISPlay:COLumn? query returns the column where the next
:DISPlay:LINE or :DISPlay:STRing starts.

[:DISPlay:COLumn] <value><NL>

This example returns the current column setting to the string variable, Setting$,
then prints the contents of the variable to the computer's screen.

10 DIM Settings$[50]!Dimension variable
20 OUTPUT 707; " :DISPLAY:COLUMN?"

30 ENTER 707;Setting$

40 PRINT Setting$

50 END

15-7

Display Commands
CONNect

Command

Example

Query

Returned Format

CONNect

:DISPlay:CONNect {{ON|1} | {OFF|0}}

When enabled, :DISPlay:CONNect draws a line between consecutive waveform
data points. This is also known as linear interpolation. :DISPlay:CONNect is
force to off when color grade (:DISPlay:CGRade) persistence is on.

This example turns on the connect-the-dots feature.

10 OUTPUT 707; " :DISPLAY:CONNECT ON"
20 END

:DISPlay:CONNect?

The :DISPlay:CONNect? query returns the status of the connect-the-dots
feature.

[:DISPlay:CONNect] {1 | 0}<NL>

15-8

Display Commands
DATA?

Query

<type>

<screen_mode>

<compression>

<inversion>

Returned Format

<binary_block
_data>

DATA?

:DISPlay:DATA?
[<type>[,<screen_mode>[,<compression>
[,<inversion>]111]

The :DISPlay:DATA? query returns information about the captured data. If no
options to the query are specified, the default selections are BMP file type,
SCReen mode, compression turned ON, and inversion set to NORMal.

The bitmap type: BMP | JPG | GIF | TIF | PNG.

The display setting: SCReen | GRATicule. Selecting GRATicule displays a
10-by-8 (unit) display graticule on the screen. See also :DISPlay:GRATicule.

The file compression feature: ON | OFF.
The inversion of the displayed file: NORMal | INVert.

[:DISPlay:DATA] <binary_block_data><NL>

Data in the IEEE 488.2 definite block format.

15-9

Display Commands
DCOLor

DCOLor

Command :DISPlay:DCOLor [<color_name>]

The :DISPlay:DCOLor command resets the screen colors to the predefined
factory default colors. It also resets the grid intensity.

<color_name> {CGLevell | CGLevel2 | CGLevel3 | CGLeveld | CGLevel5
| CGLevel6 | CGLevel7 | CHANnell | CHANnel2 | CHANnel3
| CHANnel4 | DBACkgrnd | GRID | MARKers
| MEASurements | MIConsCGLevell| MTPolygons
| STEXt | WBACkgrnd | TINPuts | WOVerlap | TSCale
| WMEMories | WINText | WINBackgrnd}

Example This example sends the :DISPlay:DCOLor command.
10 OUTPUT 707;":DISPLAY:DCOLOR"
20 END

15-10

Display Commands
GRATicule

Commands
<intensity
_value>
Example

GRATicule

:DISPlay:GRATicule {GRID | FRAMe}
:DISPlay:GRATicule:INTensity <intensity_ value>
:DISPlay:GRATicule:NUMBer {1 | 2 | 4}
:DISPlay:GRATicule:SIZE {EXTended | MAXimized |
STANdard}

The :DISPlay:GRATicule command selects the type of graticule that is
displayed. Infiniium oscilloscopes have a 10-by-8 (unit) display graticule grid
GRID), a grid line is place on each vertical and horizontal division. When it is
off (FRAMe), a frame with tic marks surrounds the graticule edges.

You can dim the grid's intensity or turn the grid off to better view waveforms
that might be obscured by the graticule lines using the
:DISPlay:GRATicule:INTensity command. Otherwise, you can use the grid to
estimate waveform measurements such as amplitude and period.

The :DISPlay:GRATicule:NUMber command changes the number of graticule
viewing areas. When 2 or 4 is selected, the waveform viewing area is divided
into 2 or 4 separate graticule areas, repespectively.

The :DISPlay:GRATiclude:SIZE command allows you to change the size of the
graticule waveform viewing area by decreasing or increasing the size of the tab
area at the bottom of the screen.

When printing, the grid intensity control does not affect the hard copy. To
remove the grid from a printed hard copy, you must turn off the grid before
printing.

A integer from 0 to 100, indicating the percentage of grid intensity.

You can divide the waveform viewing area from one area into two or four
separate viewing areas using the :DISPlay:GRATicule:NUMBer command. This
allows you to separate waveforms without having to adjust the vertical position
controls.

This example sets up the oscilloscope's display background with a frame that
is separated into major and minor divisions.

10 OUTPUT 707;":DISPLAY:GRATICULE FRAME"
20 END

15-11

Display Commands
GRATicule

Queries :DISPlay:GRATicule?
:DISPlay:GRATicule:INTensity?
:DISPlay:GRATicule:NUMBer?
:DISPlay:GRATicule:SIZE?

The :DISPlay:GRATicule?, :DISPlay:GRATicule:INTensity?,
DISPlay:GRATicule:NUMBer?, and :DISPlay:GRATicule:SIZE? queries return
the type of graticule currently displayed, the intensity, the number of viewing
areas, or the size of the graticule area of the screen, depending on the query
you request.

Returned Format [:DISPlay:GRATicule] {GRID | FRAMe}<NL>
[:DISPlay:GRATicule:INTensity] <value><NL>
[:DISPlay:GRATicule:NUMBer] {1 | 2 | 4}<NL>
[:DISPlay:GRATicule:SIZE] {EXTended | MAXimized |
STANdard}<NL>

Example This example places the current display graticule setting in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707; " :DISPLAY:GRATICULE?"

30 ENTER 707;Setting$

40 PRINT Setting$

50 END

15-12

Display Commands
LABel

LABel

Command :DISPlay:LABel {{ON | 1} | {OFF | 0}}

The :DISPlay:LABel command turns on or off the display of analog and digital
channel labels. Label names can be up to 6 characters long. The label name is
assigned by using one of the following commands:

Bus label :BUS<N>:LABel
Digital channel label :DIGital<N>:LABel
Analog channel label CHANnel<N>:LABel
Example This example turns on the display of all labels.
10 OUTPUT 707;":DISPLAY:LABEL ON"
20 END
Query :DISPlay:LABel?

The :DISPlay:LABel? query returns the current state of the labels.

Returned Format [:DISPlay:LABel] {1 | 0}<NL>

Example This example places the current label state into the string variable Setting$
variable, then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":DISPLAY:LABEL?"

30 ENTER 707;Setting$

40 PRINT Setting$

50 END

15-13

Display Commands
LINE

Command

<string
_argument>

Example

LINE

:DISPlay:LINE "<string_argument>"

The :DISPlay:LINE command writes a quoted string to the screen, starting at
the location specified by the :DISPlay:ROW and :DISPlay:COLumn commands.
When using the C programming language, quotation marks as shown in the
example delimit a string.

Any series of ASCII characters enclosed in quotation marks.

This example writes the message “Infiniium Test” to the screen, starting at the
current row and column location.

10 OUTPUT 707;":DISPLAY:LINE ""Infiniium Test"""

20 END

This example writes the message "Infiniium Test" to the screen using C.
Quotation marks are included because the string is delimited.

printf ("\"Infiniium Test\"");

You may write text up to column 94. If the characters in the string do not fill
the line, the rest of the line is blanked. If the string is longer than the space
available on the current line, the excess characters are discarded.

In any case, the ROW is incremented and the COLumn remains the same. The
next :DISPlay:LINE command will write on the next line of the display. After
writing the last line in the display area, the ROW is reset to 0.

15-14

Display Commands
PERSistence

Command

Example

Query

Returned Format

Example

PERSistence

:DISPlay:PERSistence {MINimum | INFinite}

The :DISPlay:PERSistence command sets the display persistence. It works in
both real time and equivalent time modes. The parameter for this command
can be either MINimum (zero persistence) or INFinite.

This example sets the persistence to infinite.

10 OUTPUT 707;":DISPLAY:PERSISTENCE INFINITE"
20 END

:DISPlay:PERSistence?

The :DISPlay:PERSistence? query returns the current persistence value.

[:DISPlay:PERSistence] {MINimum | INFinite}<NL>

This example places the current persistence setting in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.

10 DIM Settings$[50]!Dimension variable
20 OUTPUT 707; " :DISPLAY:PERSISTENCE?"
30 ENTER 707;Setting$

40 PRINT Setting$

50 END

15-15

Display Commands
ROW

Command

<row_number>

Example

Query

Returned Format

Example

ROW

:DISPlay:ROW <row_number>

The :DISPlay:ROW command specifies the starting row on the screen for
subsequent :DISPlay:STRing and :DISPlay:LINE commands. The row number
remains constant until another :DISPlay:ROW command is received, or the row
is incremented by the :DISPlay:LINE command.

An integer representing the starting row for subsequent :DISPlay:STRing and
:DISPlay:LINE commands. The range of values 0 to 23.

This example sets the starting row for subsequent :DISPlay:STRing and
:DISPlay:LINE commands to 10.

10 OUTPUT 707;":DISPLAY:ROW 10"
20 END

:DISPlay:ROW?

The :DISPlay:ROW? query returns the current value of the row.

[:DISPlay:ROW] <row_number><NL>

This example places the current value for row in the string variable, Setting$,
then prints the contents of the variable to the computer's screen.

10 DIM Settings$[50]!Dimension variable
20 OUTPUT 707; " :DISPLAY:ROW?"

30 ENTER 707;Setting$

40 PRINT Setting$

50 END

15-16

Display Commands
SCOLor

Command

<color_name>

Table 15-1

SCOLor

:DISPlay:SCOLor <color_name>, <hue>, <saturation>,
<luminosity>

The :DISPlay:SCOLor command sets the color of the specified display element
and restores the colors to their factory settings. The display elements are
described in Table 15-1.

{CGLevell | CGLevel2 | CGLevel3 | CGLevel4d | CGLevel5
| CGLevel6 | CGLevel7 | CHANnell | CHANnel2 | CHANnel3
| CHANnel4 | DBACkgrnd | GRID | MARKers

| MEASurements | MICons | MTPolygons

| STEXt | WBACkgrnd | TINPuts | WOVerlap | TSCale

| WMEMories | WINText | WINBackgrnd}

Color Names

Color Name Definition

CGLevell Color Grade Level 1 waveform display element.

CGLevel2 Color Grade Level 2 waveform display element.

CGLevel3 Color Grade Level 3 waveform display element.

CGLeveld Color Grade Level 4 waveform display element.

CGLevel5 Color Grade Level 5 waveform display element.

CGLevel6 Color Grade Level 6 waveform display element.

CGLevel7 Color Grade Level 7 waveform display element.

CHANnel1 Channel 1 waveform display element.

CHANnel2 Channel 2 waveform display element.

CHANnel3 Channel 3 waveform display element.

CHANnel4 Channel 4 waveform display element.

DBACkgrnd Display element for the border around the outside of the waveform viewing
area.

GRID Display element for the grid inside the waveform viewing area.

MARKers Display element for the markers.

MEASurements Display element for the measurements text.

MiCons Display element for measurement icons to the left of the waveform viewing

area.

15-17

<hue>

<saturation>

<luminosity>

Example

Display Commands

SCOLor

Color Name Definition

STEXt Display element for status messages displayed in the upper left corner of
the display underneath the menu bar. Changing this changes the memory
bar's color.

WBACkgrnd Display element for the waveform viewing area’s background.

TINPuts Display element for line and aux menu entries on four channel
oscilloscopes. On two channel oscilloscopes, itis the display element for
line and external menu entries.

WO0Verlap Display element for waveforms when they overlap each other.

TSCale Display element for horizontal scale and offset control text.

WMEMories Display element for waveform memories.

WINText Display element used in dialog box controls and pull-down menus.

WINBackgrnd Display element for the background color used in dialog boxes and buttons.

An integer from 0 to 100. The hue control sets the color of the chosen display
element. As hue is increased from 0%, the color changes from red, to yellow,
to green, to blue, to purple, then back to red again at 100% hue. For color
examples, see the sample color settings table in the Infiniium Oscilloscope
online help file. Pure red is 100%, pure blue is 67%, and pure green is 33%.

An integer from 0 to 100. The saturation control sets the color purity of the
chosen display element. The saturation of a color is the purity of a color, or the
absence of white. A 100% saturated color has no white component. A 0%
saturated color is pure white.

An integer from 0 to 100. The luminosity control sets the color brightness of
the chosen display element. A 100% luminosity is the maximum color
brightness. A 0% luminosity is pure black.

This example sets the hue to 50, the saturation to 70, and the luminosity to 90
for the markers.

10 OUTPUT 707;":DISPLAY:SCOLOR MARKERS,50,70,90"
20 END

15-18

Query

Returned Format

Example

Display Commands
SCOLor

:DISPlay:SCOLor? <color_name>

The :DISPlay:SCOLor? query returns the hue, saturation, and luminosity for the
specified color.

[:DISPlay:SCOLor] <color_name>, <hue>, <saturation>,
<luminosity><NL>

This example places the current settings for the graticule color in the string
variable, Setting$, then prints the contents of the variable to the computer's

screen.

10 DIM Settings$[50]!Dimension variable

20 OuUTPUT 707; " :DISPLAY:SCOLOR? GRATICULE"
30 ENTER 707;Setting$

40 PRINT Setting$

50 END

15-19

Display Commands
STRing

Command

<string
_argument>

Example

STRing

:DISPlay:STRing "<string_ argument>"

The :DISPlay:STRing command writes text to the oscilloscope screen. The text
is written starting at the current row and column settings. If the column limit
is reached, the excess text is discarded. The :DISPlay:STRing command does
not increment the row value, but :DISPlay:LINE does.

Any series of ASCII characters enclosed in quotation marks.

This example writes the message “Example 1” to the oscilloscope's display
starting at the current row and column settings.

10 OUTPUT 707;":DISPLAY:STRING ""Example 1"""
20 END

15-20

Display Commands
TEXT

TEXT

Command :DISPlay:TEXT BLANk

The :DISPlay: TEXT command blanks the user text area of the screen.

Example This example blanks the user text area of the oscilloscope's screen.
10 OUTPUT 707;" :DISPLAY:TEXT BLANK"
20 END

15-21

15-22

16

External Trigger Commands

External Trigger Commands

The EXTernal commands only apply to the two channel Infiniium
Oscilloscope.

The EXTernal trigger subsystem commands control the vertical, Y axis
functions of the oscilloscope’s external trigger. These EXTernal
commands and queries are implemented in the Infiniium Oscilloscopes:
e BWLimit

e INPut

e PROBe

e PROBe:ATTenuation (only for the 1154A probe)

e PROBe:EADapter (only for the 11563A, 1154A, and 1159A probes)

e PROBe:ECoupling (only for the 1153A, 11564A and 1159A probes)

e PROBe:EXTernal

e PROBe:EXTernal:GAIN

e PROBe:EXTernal:UNITs

e PROBe:GAIN (only for the 1154A probe)

e PROBe:ID?

e PROBe:SKEW

¢ RANGe

e UNITs

16-2

External Trigger Commands
BWLimit

Command

Example

Query

Returned Format

Example

BWLimit
:EXTernal :BWLimit {{ON|1} | {OFF|0}}

The :EXTernal:BWLimit command controls the low-pass filter. When ON, the
bandwidth of the external trigger is limited. The bandwidth limit filter can be
used with either AC or DC coupling.

This example sets the internal low-pass filter to "ON" for the external trigger.

10 OUTPUT 707; " :EXTERNAL:BWLIMIT ON"
20 END

:EXTernal :BWLimit?

The :EXTernal:BWLimit? query returns the state of the low-pass filter for the
external trigger.

[:EXTernal:BWLimit] {1|0}<NL>

This example places the current setting of the low-pass filter in the variable
Limit, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUuTPUT 707;":EXTERNAL:BWLIMIT?"
30 ENTER 707;Limit

40 PRINT Limit

50 END

16-3

External Trigger Commands

INPut
INPut

Command :EXTernal : INPut <parameter>
The :EXTernal:INPut command selects the input coupling, impedance, and LF/
HF reject for the external trigger. The coupling can be set to AC, DC, DC50 or
DCFifty, or LFR1 or LFR2 (low-frequency reject).
LFR1 and LFR2 only apply if an 1153A probe is connected to the oscilloscope’s
External Trigger input. With an 1152A probe attached to the External Trigger
input, the :EXTernal:INPut command will not change either the coupling or
impedance.

<parameter> The parameters available in this command for Infiniium are listed below.

e DC: dc coupling, 1 MQ input impedance
e DCH0 | DCFifty: dc coupling, 50Q input impedance
e AC: ac 1 MQ input impedance
e LFR1ILFR2: ac 1 MQ input impedance

Example This example sets the external trigger input to DC50.
10 OUTPUT 707;":EXTERNAL:INPUT DC50"
20 END

Query :EXTernal : INPut?

Returned Format

Example

The :EXTernal:INPut? query returns the state of the external trigger input.

[EXTernal : INPut] <parameter><NL>

This example places the current input for the external trigger in the string
variable, Input$. The program then prints the contents of the variable to the
computer's screen.

10 OuUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707; " :EXTERNAL:INPUT?

30 ENTER 707;Input$

40 PRINT Input$

50 END

16-4

External Trigger Commands
PROBe

Command

<attenuation
_factor>

Example

Query

Returned Format

Example

PROBe

:EXTernal : PROBe {<attenuation_factor>, {RATio |
DECibel}}

The :EXTernal:PROBe command sets the probe attenuation factor for the User
Defined Probe configuration in the Probe Setup dialog box and, optionally, the
units for the probe attenuation factor. The range of the probe attenuation factor
is from 0.0001 to 1,000 and from -80 dB to 60 dB. The reference factors that
are used for scaling the display are changed with this command, and affect
automatic measurements and trigger levels.

Areal number from 0.0001 to 1,000, and -80 dB to 60 dB, representing the probe
attenuation factor; the factor depends on the units.

This example sets the probe attenuation factor of the external trigger to 10, and
the units to decibel.

10 OUTPUT 707;":EXTERNAL:PROBE 10,DEC"
20 END

:EXTernal : PROBe?

The :EXTernal:PROBe? query returns the current probe attenuation setting for
the external trigger and the units.

[:EXTernal : PROBe] <attenuation_factor>, {RATio | DECibel }<NL>

This example places the current attenuation setting for the external trigger in
the string variable, Atten$, and prints the contents.

10 DIM Atten$[50]!Dimension variable
20 OUTPUT 707; " :EXTERNAL:PROBE?"

30 ENTER 707;Atten$

40 PRINT Atten$

50 END

16-5

External Trigger Commands
PROBe:ATTenuation

PROBe:ATTenuation

Command :EXTernal : PROBe:ATTenuation {DIV1 | DIV10}

The :EXTernal:PROBe:ATTenuation command sets the internal attenuation for
the 1154A probe.

This command is only available for the 1154A probe. If one of these probes is not
connected to the external trigger you will get a Settings Conflict error.

Example This example sets the probe attenuation to divide by 10.
10 OUTPUT 707;":EXTERNAL:PROBE:ATTENUATION DIV10"
20 END

Query :EXTernal : PROBe: ATTenuation?

The :EXTernal:PROBe:ATTenuation? query returns the current probe
attenuation setting.

Returned Format [:EXTernal:PROBe:ATTenuation] {DIV1 | DIV10}<NL>

16-6

External Trigger Commands
PROBe:EADapter

Command

PROBe:EADapter

:EXTernal : PROBe:EADapter {NONE | DIV10 |
DIV20 | DIV100}

The :EXTernal:EADapter command sets the Infiniium external adapter control.
The 1153A, 1154A, and 1159A probes have external adapters that you can
attach to the end of the probe. When you attach one of these adapters, you
should use the EADapter command to set the external adapter control to match
the adapter connected to your probe as follows.

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

DIV10 Use this setting when you have a divide by
10 adapter connected to the end of your
probe.

DIV20 Use this setting when you have a divide by

20 adapter connected to the end of your
probe. (1159A probe only)

DIV100 Use this setting when you have a divide by
100 adapter connected to the end of your
probe. (1153A probe only)

This command is only available for the 1153A, 1154A, and 1159A probes. If one of
these probes is not connected to the external trigger you will get a Settings Conflict
error.

Example

This example sets the external adapter to divide by 10:

10 OUTPUT 707;":EXTERNAL:PROBE: EADAPTER DIV10"
20 END

16-7

External Trigger Commands
PROBe:EADapter

Query :EXTernal : PROBe: EADapter?

The :EXTernal:PROBe:EADapter? query returns the external adapter value.

Returned Format [EXTernal:PROBe:EDApter] {NONE | DIV10 | DIV20 |
DIV100}<NL>
Example This example places the external adapter value in the string variable, Adapter$,

then prints the contents of the variable to the computer's screen.

10 DIM Adapter$[50]!Dimension variable
20 OUTPUT 707; " :EXTERNAL:EADAPTER?

30 ENTER 707;Adapter$

40 PRINT Adapter$

50 END

16-8

External Trigger Commands
PROBe:ECoupling

Command

PROBe:ECoupling

:EXTernal : PROBe:ECoupling {NONE | AC}

The :EXTernal:PROBe:ECoupling command sets the Infiniium external
coupling adapter control. There are some probes that have external coupling
adapters that you can attach to the end of your probe. When you attach one of
these adapters, you should use the ECoupling command to set the external
coupling adapter control to match the adapter connected to your probe as
follows.

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

AC Use this setting when you have an ac
coupling adapter connected to the end of
your probe.

This command is only available for the 1153A, 1154A, and 1159A probes. If one of
these probes is not connected to the external trigger you will get a Settings Conflict

error.

Example

This example sets the external coupling adapter for external trigger to ac:

10 OUTPUT 707;":EXTERNAL:PROBE: ECOUPLING AC"
20 END

16-9

Query

Returned Format

Example

External Trigger Commands
PROBe:ECoupling

:EXTernal : PROBe:ECoupling?

The :EXTernal:PROBe:ECoupling? query returns the current external coupling
adapter value for the external trigger.

[EXTernal:PROBe:ECoupling] {NONE | AC}<NL>

This example places the external coupling adapter value of the external trigger
in the string variable, Adapter$, then prints the contents of the variable to the
computer's screen.

10
20
30
40
50

DIM Adapter$[50] !Dimension variable
OUTPUT 707;" : EXTERNAL : PROBE : ECOUPLING?
ENTER 707;Adapters$

PRINT Adapter$

END

16-10

External Trigger Commands
PROBe:EXTernal

rmmand

Example

Query

Returned Format

Example

PROBe:EXTernal

:EXTernal : PROBe:EXTernal {{ON|1} | {OFF|0}}

The :EXTernal:PROBe:EXTernal command sets the external probe mode to on
or off.

This example sets external probe mode to on.

10 OUTPUT 707; "EXTERNAL:PROBE: EXTERNAL ON"
20 END

:EXTernal : PROBe: EXTernal?

The :EXTernal:PROBe:EXTernal? query returns the current external probe
mode for the external trigger.

[:EXTernal:PROBe:EXTernal] {1|0}<NL>

This example places the current setting of the external probe mode on the
external trigger in the variable Mode, then prints the contents of the variable
to the computer's screen.

10 OuTPUT 707;"SYSTEM:HEADER OFF"

20 OUTPUT 707; " :EXTERNAL:PROBE: EXTERNAL?"
30 ENTER 707;Mode

40 PRINT Mode

50 END

16-11

External Trigger Commands
PROBe:EXTernal:GAIN

Command

<gain_factor>

Example

PROBe:EXTernal: GAIN

:EXTernal : PROBe: EXTernal : GAIN <gain_factor>[, {RATio
| DECibel}]

:EXTernal:PROBe:EXTernal command must be set to ON before issuing this
command or query or this command will have no effect.

The :EXTernal:PROBe:EXTernal: GAIN command sets the probe external
scaling gain factor and, optionally, the units for the probe gain factor. The
reference factors that are used for scaling the display are changed with this
command, and affect automatic measurements and trigger levels.

The RATio or DECibel also sets the mode for the probe attenuation and also
determines the units that may be used for a subsequent command. For example,
if you select RATio mode, then the attenuation factor must be given in ratio gain
units. In DECibel mode, you can specify the units for the argument as “dB”.

A real number from 0.001 to 10000 for the RATio gain units, or from —60 dB to
80 dB for the DECibel gain units.

This example sets the probe external scaling gain factor for the external trigger
to 10.
10 OUTPUT 707;":EXTERNAL:PROBE: EXTERNAL ON"

20 OUTPUT 707; " :EXTERNAL:PROBE: EXTERNAL:GAIN 10,RATIO"
30 END

16-12

Query

Returned Format

Example

External Trigger Commands
PROBe:EXTernal:GAIN

: EXTERNAL : PROBe: EXTernal : GAIN?

The :EXTernal:PROBe:EXTernal: GAIN? query returns the probe external gain
setting for the external trigger.

[:EXTernal : PROBe: EXTernal : GAIN] <gain_factor><NL>

This example places the external gain value of the probe on the external trigger
in the variable, Gain, then prints the contents of the variable to the computer's
screen.

10 OUTPUT 707; " :EXTERNAL:PROBE: EXTERNAL ON"

20 OUTPUT 707; " :EXTERNAL:PROBE: EXTERNAL:GAIN?"
30 ENTER 707;Gain

40 PRINT Gain

50 END

16-13

External Trigger Commands
PROBe:EXTernal:UNITs

Command

Example

PROBe:EXTernal:UNITs

:EXTernal : PROBe:EXTernal :UNITs {VOLT | AMPere | WATT
| UNKNown}

:EXTernal:PROBe:EXTernal command must be set to ON before issuing this
command or query or this command will have no effect.

The :EXTernal:PROBe:EXTernal:UNITs command sets the probe external
vertical units on the external trigger. You can specify Y-axis units of VOLTS,
AMPs, WATTs, or UNKNown. See the Probe Setup dialog box for more
information.

This example sets the external units for the probe on the external trigger to
amperes.
10 OUTPUT 707;":EXTERNAL:PROBE: EXTERNAL ON"

20 OUTPUT 707; " :EXTERNAL:PROBE: EXTERNAL:UNITS AMPERE"
30 END

16-14

Query

Returned Format

Example

External Trigger Commands
PROBe:EXTernal:UNITs

:EXTernal : PROBe: EXTernal :UNITs?

The :EXTernal:PROBe:EXTernal:UNITs? query returns the current external
units setting for the probe on the external trigger.

[:EXTernal :PROBe:EXTernal :UNITs] {VOLT | AMPere | WATT |
UNKNown } <NL>

This example places the external vertical units for the probe on the external
trigger in the string variable, Units$, then prints the contents of the variable to
the computer's screen.

10
20
30
40
50
60

DIM Units$[50]

OUTPUT 707; " :EXTERNAL: PROBE : EXTERNAL ON"
OUTPUT 707; " :EXTERNAL: PROBE: EXTERNAL :UNITS?"
ENTER 707;Units$

PRINT Units$

END

16-15

External Trigger Commands
PROBe:GAIN

Command

Example

Query

Returned Format

PROBe:GAIN

:EXTernal : PROBe:GAIN {X1 | X10}

The :EXTernal:PROBe:GAIN command sets the probe gain. Thel154A probe
has the ability to change the probe’s input amplifier gain.

This command is only available for the 1154A probe. If one of these probes is not
connected to the external trigger you will get a settings conflict error.

The units of volts, amperes, watts, and unknown are set using the
:EXTernal:UNITs command.

This example sets the probe gain to times 10.

10 OUTPUT 707;":EXTERNAL:PROBE:GAIN X10"
20 END

:EXTernal : PROBe: GAIN?

The :EXTernal:PROBe:GAIN? query returns the probe gain setting.

[:EXTernal : PROBe:GAIN] {X1 | X103} <NL>

16-16

External Trigger Commands
PROBe:ID?

PROBe:ID?

Query :EXTernal : PROBe: ID?

The :EXTernal:PROBe:ID? query returns the type of probe attached to the
external trigger input.

Returned Format [:EXTernal:PROBe:ID] <probe_id>
<probe_id> A string of up to 9 alphanumeric characters. Some of the possible returned
values are:
e 1131A
e 1132A
e 1134A
e 1147A
e 1154A
e 1156A
e 1157A
e 1158A
e 1159A
e 1165A
e AutoProbe
e E2621A
o E2622A
e [E2695A
e E2697A
e HPI1152A
e HP1153A
e NONE
* Probe
e Unknown

Example This example reports the probe type connected to external trigger, if one is
connected.
10 OUTPUT 707;":EXTernal:PROBE:ID?"
20 END

16-17

External Trigger Commands
PROBe:SKEW

Command

<skew_value>

Example

Query

Returned Format

See Also

PROBe:SKEW

:EXTernal : PROBe: SKEW <skew_value>

The :EXTernal:PROBe:SKEW command sets the value of the External Trigger
probe skew.

A real number from -100E-6 to 100E-6.

This example sets the external probe skew to 10 microseconds.

10 OUTPUT 707;":EXTERNAL:PROBE:SKEW 10E-6"
20 END

:EXTernal : PROBe: SKEW?

The :EXTernal:PROBe:SKEW? query returns the current skew setting for the
external trigger.

[:EXTernal : PROBe: SKEW] <skew_value><NL>

For information on skew, see the Calibration Commands chapter.

16-18

External Trigger Commands
RANGe

Command

<range_value>

Example

Query

Returned Format

Example

RANGe

:EXTernal :RANGe <range_value>

The :EXTernal:RANGe command defines the vertical axis of the external
trigger. The value represents the full-scale deflection of the vertical axis in
volts. This value changes as the probe attenuation factor is changed. If you
change the probe attenuation, the range value is multiplied by the probe
attenuation factor.

Voltage setting of 1, 5, or 25, corresponding to 1V, +5V, or +25V for 50 Q
impedance and 1, 5, or 8, coressponding to 1V, 5V, or +8V for 1 MQ
impedance.

This example sets the vertical range for the external trigger to +5V.

10 OUTPUT 707;":EXTERNAL:RANGE 5"
20 END

:EXTernal : RANGe?

The :EXTernal:RANGe? query returns the current vertical axis setting for the
external trigger.

[:EXTernal :RANGe] <range value><NL>

This example places the current range value in the number variable, Setting,
then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707; " :EXTERNAL:RANGE?"

30 ENTER 707;Setting

40 PRINT Setting

50 END

16-19

External Trigger Commands

UNITs
UNITs

Command :EXTernal :UNITs {VOLT | AMPere | WATT | UNKNown}
The :EXTernal:UNITs command sets the vertical units. You can specify Y-axis
units of VOLTS, AMPS, WATTSs, or UNKNown. The units are implied for other
pertinent external trigger commands (such as RANGe). See the Probe Setup
dialog box for more information. See also :EXTernal:PROBe:EXTernal and
:EXTernal:PROBe:UNITs commands.

Example This example sets the units for the external trigger to amperes.
10 OUTPUT 707;":EXTERNAL:UNITS AMPERE"
20 END

Query :EXTernal :UNITs?

Returned Format

Example

The :EXTernal:UNITs? query returns the current units setting for the external
trigger.

[:EXTernal:UNITs] {VOLT | AMPere | WATT | UNKNown}<NL>

This example places the vertical units for the external trigger in the string
variable, Units$, then prints the contents of the variable to the computer's
screen.

10 DIM Units$[50]

20 OUTPUT 707; "EXTERNAL:UNITS?"
30 ENTER 707;Units$

40 PRINT Units$

50 END

16-20

17

Function Commands

Function Commands

The FUNCtion subsystem defines functions 1 - 4. The operands of these
functions can be any of the installed channels in the oscilloscope,

waveform memories 1 - 4, functions 1 - 4, or a constant. These FUNCtion
commands and queries are implemented in the Infiniium Oscilloscopes:

e FUNCtion<N>? e [NTegrate

e ABSolute e [NVert

e ADD e LOWPass

e AVERage e MAGNify

e COMMonmode e MAXimum

e DIFF (Differentiate) e MINimum

e DISPlay e MULTiply

e DIVide e OFFSet

e FFT:FREQuency e RANGe

e FFT:RESolution? e SMOoth

e FFT:WINDow e SQRT

e FEFTMagnitude e SQUare

e FEF'TPhase e SUBTract

e HIGHpass e VERSus

¢ HORizontal e VERTical

e HORizontal:POSition e VERTical:OFFset
e HORizontal:RANGe e VERTical:RANGe

You can control the vertical scaling and offset functions remotely using
the RANGe and OFFSet commands in this subsystem. You can obtain
the horizontal scaling and position values of the functions using the
:HORizontal:RANge? and :HORizontal:POSition? queries in this
subsystem.

If a channel is not on but is used as an operand, that channel will acquire
waveform data.

If the operand waveforms have different memory depths, the function
uses the shorter of the two.

17-2

If the two operands have the same time scales, the resulting function has
the same time scale. If the operands have different time scales, the
resulting function has no valid time scale. This is because operations are
performed based on the displayed waveform data position, and the time
relationship of the data records cannot be considered. When the time
scale is not valid, delta time pulse parameter measurements have no
meaning, and the unknown result indicator is displayed on the screen.

Constant operands take on the same time scale as the associated
waveform operand.

17-3

Function Commands
FUNCtion<N>?

FUNCtion<N>?

Query :FUNCtion<N>?

The :FUNCtion<N>? query returns the currently defined source(s) for the
function.

Returned Format [:FUNCtion<N>:<operator>] {<operand>, [,<operand>]}<NL>
<N> Aninteger, 1 - 4, representing the selected function.

<operator> Active math operation for the selected function: ADD, AVERage,
COMMonmode, DIFF, DIVide, FFTMagnitude, FFTPhase, HIGHpass,
INTegrate, INVert, LOWPass, MAGNify, MAXimum, MINimum, MULTiply,
SMOoth, SUBTract, or VERSus.

<operand> Any allowable source for the selected FUNCtion, including channels, waveform
memories 1-4, and functions 1-4. If the function is applied to a constant, the
source returns the constant.

The channel number is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

Example This example returns the currently defined source for function 1.
10 OUTPUT 707;":FUNCTION1?"
20 END

If the headers are off (see :SYSTem:HEADer), the query returns only the
operands, not the operator.

10 :SYST:HEAD ON

20 :FUNC1:ADD CHANI1, CHAN2

30 :FUNC1? lreturns :FUNC1:ADD CHAN1, CHAN2
40 :SYST:HEAD OFF

50 :FUNC1? 'returns CHAN1, CHAN2

17-4

Function Commands
ABSolute

ABSolute

Command :FUNCtion<N>:ABSolute <operand>

The :FUNCtion<N>:ABSolute command takes the absolute value an operand.
<operand> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

Example This example turns on the absolute value command using channel 3.
10 OUTPUT 707; "MEASURE:ABSOLUTE CHANNEL3"
20 END

17-5

Function Commands
ADD

Command

<N>

<operand>

Example

ADD

:FUNCtion<N>:ADD <operand>, <operand>

The :FUNCtion<N>:ADD command defines a function that takes the algebraic
sum of the two operands.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

This example sets up function 1 to add channel 1 to channel 2.

10 OUTPUT 707; " :FUNCTIONL:ADD CHANNEL1l, CHANNEL2"
20 END

17-6

Function Commands
AVERage

Command

<N>

<operand>

<averages>

Example

AVERage

: FUNCtion<N>:AVERage <operand>[,<averages>]

The :FUNCtion<N>:AVERage command defines a function that averages the
operand based on the number of specified averages.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6

An integer, 2 to 4096 specifing the number of waveforms to be averaged

This example sets up function 1 to average channel 1 using 16 averages.

10 OUTPUT 707;":FUNCTION1:AVERAGE CHANNEL1,16"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

17-7

Function Commands
COMMonmode

Command

<N>

<operand>

COMMonmode

: FUNCtion<N>:COMMonmode <operand>, <operand>

The :FUNCtion<N>:COMMonmode command defines a function that adds the
voltage values of the two operands and divides by 2, point by point.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:
An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:
A real number from -1E6 to 1E6.

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

Example

This example sets up function 1 to view the commonmode voltage value of
channel 1 and channel 2.

10 OUTPUT 707;":FUNCTION1:COMMONMODE CHANNEL1, CHANNEL2"
20 END

17-8

Function Commands
DIFF (Differentiate)

Command

<N>

<operand>

Example

DIFF (Differentiate)

:FUNCtion<N>:DIFF <operand>

The :FUNCtion<N>:DIFF command defines a function that computes the
discrete derivative of the operand.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

This example sets up function 2 to take the discrete derivative of the waveform
on channel 2.

10 OUTPUT 707;":FUNCTION2:DIFF CHANNEL2"
20 END

17-9

Function Commands
DISPlay

Command

<N>

Example

Query

Returned Format

Example

DISPlay

:FUNCtion<N>:DISPlay {{ON|1} | {OFF|0}}

The :FUNCtion<N>:DISPlay command either displays the selected function or
removes it from the display.

An integer, 1 - 4, representing the selected function.

This example turns function 1 on.

10 OUTPUT 707;":FUNCTION1:DISPLAY ON"
20 END

:FUNCtion<N>:DISPlay?

The :FUNCtion<N>:DISPlay? query returns the displayed status of the specified
function.

[:FUNCtion<N>:DISPlay] {1]|0}<NL>

This example places the current state of function 1 in the variable, Setting, then
prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707; " :FUNCTION1:DISPLAY?"
30 ENTER 707;Setting

40 PRINT Setting

50 END

17-10

Function Commands
DIVide

Command

<N>

<operand>

Example

DIVide

:FUNCtion<N>:DIVide <operand>, <operand>

The :FUNCtion<N>:DIVide command defines a function that divides the first
operand by the second operand.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:
An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is: A real number from -1E6 to 1E6.

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

This example sets up function 2 to divide the waveform on channel 1 by the
waveform in waveform memory 4.

10 OUTPUT 707; " :FUNCTIONZ2:DIVIDE CHANNEL1, WMEMORY4"
20 END

17-11

Function Commands
FFT:FREQuency

Command

<N>

<center
_frequency
_value>

Query

Returned Format

FFT:FREQuency

:FUNCtion<N>:FFT:FREQuency <center_frequency_value>

The :FUNCtion<N>:FFT:FREQuency command sets the center frequency for
the FFT when :FUNCtion<N>:FFTMagnitude is defined for the selected
function.

An integer, 1 - 4, representing the selected function.

A real number for the value in Hertz, from -1E12 to 1E12.

:FUNCtion<N>:FFT:FREQuency?

The :FUNCtion<N>:FFT:FREQuency? query returns the center frequency
value.

[FUNCtion<N>:FFT:FREQuency] <center_frequency_value><NL>

17-12

Function Commands
FFT:REFerence

Command

<N>

Example

Query

Returned Format

Example

FFT:REFerence

:FUNCtion<N>:FFT:REFerence {DISPlay | TRIGger}

The :FUNCtion<N>:FFT:REFerence command sets the reference point for
calculating the FFT phase function.

An integer, 1 - 4, representing the selected function.

This example sets the reference point to DISPlay.

10 OUTPUT 707; " :FUNCTION<N>:FFT:REFERENCE DISPLAY
20 END

:FUNCtion<N>:FFT:REFerence?

The :FUNCtion<N>:FFT:REFerence? query returns the currently selected
reference point for the FFT phase function.

[:FUNCtion<N>:FFT:REFerence] {DISPlay | TRIGger }<NL>

This example places the current state of the function 1 FFT reference point in
the string variable, REF?, then prints the contents of the variable to the
computer's screen.

10 DIM REFS$[50]

20 OUTPUT 707;":FUNCTIONI:FFT:REFERENCE?"
30 ENTER 707;REF$

40 PRINT REFS$

50 END

17-13

Function Commands
FFT:RESolution?

FFT:RESolution?

Query :FUNCtion<N>:FFT:RESolution?

The :FUNCtion<N>:FFT:RESolution? query returns the current resolution of
the FFT function.

Returned Format [FUNCtion<N>:FFT:RESolution] <resolution_value><NL>
<N> An integer from 1 to 4 representing the selected function.
<resolution

_value> Resolution frequency.

The FFT resolution is determined by the sample rate and memory depth
settings. The FFT resolution is calculated using the following equation:

FFT Resolution = Sample Rate / Effective Memory Depth

The effective memory depth is the highest power of 2 less than or equal to the
number of sample points across the display. The memory bar in the status area
at the top of the display indicates how much of the actual memory depth is
across the display.

17-14

Function Commands
FFT:WINDow

Command

<N>

Example

FFT:WINDow

:FUNCtion<N>:FFT:WINDow {RECTangular | HANNing |
FLATtop}

The :FUNCtion<N>:FFT:WINDow command sets the window type for the FFT
function.

The FFT function assumes that the time record repeats. Unless there is an
integral number of cycles of the sampled waveform in the record, a discontinuity
is created at the beginning of the record. This introduces additional frequency
components into the spectrum about the actual peaks, which is referred to as
spectral leakage. To minimize spectral leakage, windows that approach zero
smoothly at the beginning and end of the record are employed as filters to the
FFTs. Each window is useful for certain classes of input waveforms.

e The RECTangular window is essentially no window, and all points are
multiplied by 1. This window is useful for transient waveforms and
waveforms where there are an integral number of cycles in the time record.

e The HANNing window is useful for frequency resolution and general purpose
use. It is good for resolving two frequencies that are close together, or for
making frequency measurements.

e The FLATtop window is best for making accurate amplitude measurements
of frequency peaks.

An integer, 1 - 4, representing the selected function. This command presently
selects all functions, regardless of which integer (1-4) is passed.

This example sets the window type for the FFT function to RECTangular.

10 OUTPUT 707;" :FUNCTION<N>:FFT:WINDOW RECTANGULAR
20 END

17-15

Query

Returned Format

Example

Function Commands
FFT:WINDow

:FUNCtion<N>:FFT:WINDow?

The :FUNCtion<N>:FFT:-WINDow? query returns the current selected window
for the FFT function.

[:FUNCtion<N>:FFT:WINDow] {RECTangular | HANNing |
FLATtop}<NL>

This example places the current state of the function 1 FFT window in the string
variable, WND?, then prints the contents of the variable to the computer's
screen.

10
20
30
40
50

DIM WNDS$ [50]

OUTPUT 707; " :FUNCTIONI:FFT:WINDOW?"
ENTER 707 ;WND$

PRINT WNDS$S

END

17-16

Function Commands
FFTMagnitude

Command

<N>

<operand>

Example

FFTMagnitude

:FUNCtion<N>:FFTMagnitude <operand>

The :FUNCtion<N>:FFTMagnitude command computes the Fast Fourier
Transform (FFT) of the specified channel, function, or memory. The FFT takes
the digitized time record and transforms it to magnitude and phase components
as a function of frequency.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example sets up function 1 to compute the FFT of waveform memory 3.

10 OUTPUT 707; " :FUNCTIONL:FFTMAGNITUDE WMEMORY3"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

17-17

Function Commands
FFTPhase

Command

<N>

<source>

Example

FFTPhase

:FUNCtion<N>:FFTPhase <source>

The :FUNCtion<N>:FFTPhase command computes the Fast Fourier Transform
(FFT) of the specified channel, function, or waveform memory. The FFT takes
the digitized time record and transforms it into magnitude and phase
components as a function of frequency.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example sets up function 1 to compute the FFT of waveform memory 3.

10 OUTPUT 707; " :FUNCTIONL:FFTPHASE WMEMORY3"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

17-18

Function Commands
HIGHpass

Command

<N>

<source>

HIGHpass

:FUNCtion<N>:HIGHpass <source>,<bandwidth>

The :FUNCtion<N>:HIGHpass command applies a single-pole high pass filter to
the source waveform. The bandwidth that you set is the 3 dB bandwidth of the
filter.

An integer, 1 - 4, representing the selected function.
{CHANnel<n> | FUNCtion<n> | WMEMory<n>}

CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:
An integer, 1 - 4, representing the selected function or waveform memory.

<bandwidth> A real number in the range of 50 to 50E9.

Example

This example sets up function 2 to compute a high pass filter with a bandwidth
of 1 MHz.

10 OUTPUT 707;":FUNCTION2:HIGHPASS CHANNEL4,l1E6"
20 END

17-19

Function Commands
HORizontal:POSition

Command
<N>
<position
_value>
Query

Returned Format

Example

HORIizontal:POSition

:FUNCtion<N>:HORizontal:POSition <position_value>

The :FUNCtion<N>:HORizontal:POSition command sets the time value at
center screen for the selected function. If the oscilloscope is not already in
manual mode when you execute this command, it puts the oscilloscope in
manual mode.

When you select :FUNCtion<N>:FFTMagnitude, the horizontal position is
equivalent to the center frequency. This also automatically selects manual
mode.

An integer, 1 - 4, representing the selected function.

A real number for the position value in time, in seconds, from -1E12 to 1E12.

:FUNCtion<N>:HORizontal:POSition?

The :FUNCtion<N>:HORizontal:POSition? query returns the current time value
at center screen of the selected function.

[:FUNCtion<N>:HORizontal:POSition] <position><NL>

This example places the current horizontal position setting for function 2 in the
numeric variable, Value, then prints the contents to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :FUNCTION2 :HORIZONTAL:POSITION?"

30 ENTER 707;Value

40 PRINT Value

50 END

17-20

Function Commands
HORizontal:RANGe

Command

<N>

<range_value>

Query

Returned Format

Example

HORIizontal:RANGe

:FUNCtion<N>:HORizontal :RANGe <range_value>

The :FUNCtion<N>:HORizonta:RANGe command sets the current time range
for the specified function. This automatically selects manual mode.

An integer, 1 - 4, representing the selected function.

A real number for the width of screen in current X-axis units (usually seconds),
from 1E-12 to 50E12.

:FUNCtion<N>:HORizontal : RANGe?

The :FUNCtion<N>:HORizontal:RANGe? query returns the current time range
setting of the specified function.

[:FUNCtion<N>:HORizontal :RANGe] <range><NL>

This example places the current horizontal range setting of function 2 in the
numeric variable, Value, then prints the contents to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :FUNCTION2:HORIZONTAL:RANGE?"

30 ENTER 707;Value

40 PRINT Value

50 END

17-21

Function Commands
INTegrate

Command

<N>

<operand>

Example

INTegrate

:FUNCtion<N>:INTegrate <operand>

The :FUNCtion<N>:INTegrate command defines a function that computes the
integral of the specified operand's waveform.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example sets up function 1 to compute the integral of
waveform memory 3.

10 OUTPUT 707;":FUNCTION1:INTEGRATE WMEMORY3"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

17-22

Function Commands
INVert

Command

<N>

<operand>

Example

INVert

:FUNCtion<N>:INVert <operand>

The :FUNCtion<N>:INVert command defines a function that inverts the defined
operand's waveform by multiplying by -1.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example sets up function 2 to invert the waveform on channel 1.

10 OUTPUT 707;":FUNCTIONZ2:INVERT CHANNEL1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

17-23

Function Commands
LOWPass

Command

<N>

<source>

<bandwidth>

Example

LOWPass

:FUNCtion<N>:LOWPass <source>,<bandwidth>

The :FUNCtion<N>:LOWPass command applies a 4th order Bessel-Thompson
pass filter to the source waveform. The bandwidth that you set is the 3 dB
bandwidth of the filter.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:
An integer, 1 - 4, representing the selected function or waveform memory.

A real number in the range of 50 to 50E9.

This example sets up function 2 to compute a low pass filter with a bandwidth
of 1 MHz.

10 OUTPUT 707;":FUNCTIONZ2:LOWPASS CHANNEL4,1lE6"
20 END

17-24

Function Commands
MAGNify

Command

<N>

<operand>

Example

MAGNify

: FUNCtion<N>:MAGNify <operand>

The :FUNCtion<N>:MAGNify command defines a function that is a copy of the
operand. The magnify function is a software magnify. No hardware settings
are altered as a result of using this function. It is useful for scaling channels,
another function, or memories with the RANGe and OFFSet commands in this
subsystem.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example creates a function (function 1) that is a magnified version of
channel 1.

10 OUTPUT 707;":FUNCTION1:MAGNIFY CHANNELL"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

17-25

Function Commands

MAXimum
MAXimum
Command : FUNCtion<N>:MAXimum <operand>
The :FUNCtion<N>:MAXmum command defines a function that computes the
maximum of each time bucket for the defined operand's waveform.
<N> Aninteger, 1 - 4, representing the selected function.
<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:
An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:
A real number from -1E6 to 1E6.
Example This example sets up function 2 to compute the maxmum of each time bucket

for channel 4.

10 OUTPUT 707; " :FUNCTIONZ2:MAXIMUM CHANNEL4"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

17-26

Function Commands
MAXimum

Command

<N>

<operand>

Example

MAXimum

: FUNCtion<N>:MAXimum <operand>

The :FUNCtion<N>:MAXimum command defines a function that computes the
maximum value of the operand waveform in each time bucket.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example sets up function 2 to compute the maximum of each time bucket
for channel 2.

10 OUTPUT 707;":FUNCTION2:MAXIMUM CHANNEL2"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

17-27

Function Commands
MINimum

Command

<N>

<operand>

Example

MINimum

:FUNCtion<N>:MINimum <operand>

The :FUNCtion<N>:MINimum command defines a function that computes the
minimum of each time bucket for the defined operand's waveform.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example sets up function 2 to compute the minimum of each time bucket
for channel 4.

10 OUTPUT 707;":FUNCTION2:MINIMUM CHANNEL4"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

17-28

Function Commands
MULTiply

Command

<N>

<operand>

Example

MULTiply

:FUNCtion<N>:MULTiply <operand>, <operand>

The :FUNCtion<N>:MULTiply command defines a function that algebraically
multiplies the first operand by the second operand.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example defines a function that multiplies channel 1 by waveform
memory 1.

10 OUTPUT 707;":FUNCTION1:MULTIPLY CHANNEL1, WMEMORY1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

17-29

Function Commands
OFFSet

Command

<N>

<offset_value>

Example

Query

Returned Format

Example

OFFSet

:FUNCtion<N>:0FFSet <offset_value>

The :FUNCtion<N>:0FFSet command sets the voltage represented at the
center of the screen for the selected function. This automatically changes the
mode from auto to manual.

An integer, 1 - 4, representing the selected function.

A real number for the vertical offset in the currently selected Y-axis units
(normally volts). The offset value is limited to being within the vertical range
that can be represented by the function data.

This example sets the offset voltage for function 1 to 2 mV.

10 OUTPUT 707;":FUNCTION1:OFFSET 2E-3"
20 END

:FUNCtion<N>:0FFSet?

The :FUNCtion<N>:0FFSet? query returns the current offset value for the
selected function.

[:FUNCtion<N>:0FFSet] <offset_value><NL>

This example places the current setting for offset on function 2 in the numeric
variable, Value, then prints the result to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :FUNCTION2:OFFSET?"

30 ENTER 707;Value

40 PRINT Value

50 END

17-30

Function Commands
RANGe

Command

<N>

<full_scale
_range>

Example

Query

Returned Format

Example

RANGe

:FUNCtion<N>:RANGe <full_scale_range>

The :FUNCtion<N>:RANGe command defines the full-scale vertical axis of the
selected function. This automatically changes the mode from auto to manual.

An integer, 1 - 4, representing the selected function.

A real number for the full-scale vertical range, from 100E-18 to 10E15.

This example sets the full-scale range for function 1 to 400 mV.

10 OUTPUT 707;":FUNCTION1:RANGE 400E-3"
20 END

: FUNCtion<N>:RANGe?

The :FUNCtion<N>:RANGe? query returns the current full-scale range setting
for the specified function.

[:FUNCtion<N>:RANGe] <full_scale_range><NL>

This example places the current range setting for function 2 in the numeric
variable “Value,” then prints the contents to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :FUNCTIONZ2 :RANGE?"

30 ENTER 707;Value

40 PRINT Value

50 END

17-31

Function Commands

SMO0oth
SMOoth
Command : FUNCtion<N>:SMOoth <operand>|[,<points>]
The :FUNCtion<N>:SMOoth command defines a function that assigns the
smoothing operator to the operand with the number of specified smoothing
points.
<N> Aninteger, 1 - 4, representing the selected function.
<operand> {CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:
An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:
A real number from -1E6 to 1E6
<points> An integer, odd numbers from 3 to 4001 specifing the number of smoothing
points.
Example This example sets up function 1 using assigning smoothing operator to channel

1 using 5 smoothing points.

10 OUTPUT 707;":FUNCTION1:SMOOTH CHANNEL1,5"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.
F2 can have F1 as a source.

F1 cannot have any other function as a source.

17-32

Function Commands
SORT

SQRT

Command :FUNCtion<N>:SQRT <operand>

The :FUNCtion<N>:SQRT command takes the square root of the operand.
<operand> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

Example This example turns on the square root function using channel 3.
10 OUTPUT 707; "MEASURE:SQRT CHANNEL3"
20 END

17-33

Function Commands
SQUare

SQUare

Command :FUNCtion<N>:SQUare <operand>

The :FUNCtion<N>:SQUare command takes the square value of the operand.
<operand> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

Example This example turns on the square value command using channel 3.
10 OUTPUT 707; "MEASURE:SQUARE CHANNEL3"
20 END

17-34

Function Commands
SUBTract

Command

<N>

<operand>

Example

SUBTract

:FUNCtion<N>:SUBTract <operand>, <operand>

The :FUNCtion<N>:SUBTract command defines a function that algebraically
subtracts the second operand from the first operand.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example defines a function that subtracts waveform memory 1 from
channel 1.

10 OUTPUT 707;":FUNCTION1:SUBTRACT CHANNEL1, WMEMORY1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

17-35

Function Commands
VERSus

Command

<N>

<operand>

Example

VERSus

:FUNCtion<N>:VERSus <operand>, <operand>

The :FUNCtion<N>:VERSus command defines a function for an X-versus-Y
display. The first operand defines the Y axis and the second defines the X axis.
The Y-axis range and offset are initially equal to that of the first operand, and
you can adjust them with the RANGe and OFFSet commands in this subsystem.

An integer, 1 - 4, representing the selected function.

{CHANnel<n> | FUNCtion<n> | WMEMory<n> | <float_value>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.
<float_value> is:

A real number from -1E6 to 1E6.

This example defines function 1 as an X-versus-Y display. Channel 1 is the X
axis and waveform memory 2 is the Y axis.

10 OUTPUT 707;":FUNCTION1:VERSUS WMEMORY2, CHANNEL1"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.
F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

17-36

Function Commands
VERTical

Command

Query

Returned Format

<N>

Example

VERTical

:FUNCtion<N>:VERTical {AUTO | MANual}

The :FUNCtion<N>:VERTical command sets the vertical scaling mode of the
specified function to either AUTO or MANual.

This command also contains the following commands and queries:
e OFFset
e RANge

An integer, 1 - 4, representing the selected function.

:FUNCtion<N>:VERTical?

The :FUNCtion<N>:VERTical? query returns the current vertical scaling mode
of the specified function.

[:FUNCtion<N>:VERTical] {AUTO | MANual }<NL>

This example places the current state of the vertical tracking of function 1 in
the string variable, Setting$, then prints the contents of the variable to the
computer's screen.

10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707; " :FUNCTIONL1:VERTICAL?"
30 ENTER 707;Settings$

40 PRINT Setting$

50 END

17-37

Function Commands
VERTical:0FFSet

Command

<N>

<offset_wvalue>

Query

Returned Format

Example

VERTical:OFFSet

:FUNCtion<N>:VERTical:OFFSet <offset_value>

The :FUNCtion<N>:VERTical:OFFSet command sets the voltage represented
at center screen for the selected function. This automatically changes the mode
from auto to manual.

An integer, 1 - 4, representing the selected function.

A real number for the vertical offset in the currently selected Y-axis units
(normally volts). The offset value is limited only to being within the vertical
range that can be represented by the function data.

:FUNCtion<N>:VERTical:OFFset?

The :FUNCtion<N>:VERTical:OFFSet? query returns the current offset value
of the selected function.

[:FUNCtion<N>:VERTical:0FFset] <offset_value><NL>

This example places the current offset setting for function 2 in the numeric
variable, Value, then prints the contents to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :FUNCTIONZ2:VERTICAL:OFFSET?"

30 ENTER 707;Value

40 PRINT Value

50 END

17-38

Function Commands
VERTical:RANGe

Command

<N>

<full_scale
_range>

Query

Returned Format

Example

VERTical:RANGe

:FUNCtion<N>:VERTical:RANGe <full_scale_range>

The :FUNCtion<N>:VERTical:RANGe command defines the full-scale vertical
axis of the selected function. This automatically changes the mode from auto
to manual, if the oscilloscope is not already in manual mode.

An integer, 1 - 4, representing the selected function.

A real number for the full-scale vertical range, from 100E-18 to 10E15.

:FUNCtion<N>:VERTical : RANGe?

The :FUNCtion<N>:VERTical:RANGe? query returns the current range setting
of the specified function.

[:FUNCtion<N>:VERTical :RANGe] <range><NL>

This example places the current vertical range setting of function 2 in the
numeric variable, Value, then prints the contents to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :FUNCTION2:VERTICAL:RANGE?"

30 ENTER 707;Value

40 PRINT Value

50 END

17-39

17-40

18

Hardcopy Commands

Hardcopy Commands

The HARDcopy subsystem commands set various parameters for
printing the screen. The print sequence is activated when the root level
command :PRINt is sent.

These HARDcopy commands and queries are implemented in the
Infiniium Oscilloscopes:

AREA

DPRinter

FACTors

IMAGe

PRINTers?

18-2

Hardcopy Commands
AREA

Command

Example

Query

Returned Format

Example

AREA

:HARDcopy :AREA {GRATicule | SCReen}

The :-HARDcopy:AREA command selects which data from the screen is to be
printed. When you select GRATicule, only the graticule area of the screen is
printed (this is the same as choosing Waveforms Only in the Configure Printer
dialog box). When you select SCReen, the entire screen is printed.

This example selects the graticule for printing.

10 OUTPUT 707;" :HARDCOPY:AREA GRATICULE"
20 END

:HARDcopy :AREA?

The :HARDcopy:AREA? query returns the current setting for the area of the
screen to be printed.

[:HARDcopy:AREA] {GRATicule | SCReen}<NL>

This example places the current selection for the area to be printed in the string
variable, Selection$, then prints the contents of the variable to the computer's
screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707; " :HARDCOPY:AREA?"

30 ENTER 707;Selection$

40 PRINT Selection$

50 END

18-3

Hardcopy Commands
DPRinter

Command

<printer
_number>

<printer
_string>

Examples

DPRinter

:HARDcopy:DPRinter
{<printer_number>|<printer_string>}

The :HARDcopy:DPRinter command selects the default printer to be used.

An integer representing the attached printer. This number corresponds to the
number returned with each printer name by the :HARDcopy:PRINters? query.

A string of alphanumeric characters representing the attached printer.

The :HARDcopy:DPRinter command specifies a number or string for the printer
attached to the oscilloscope. The printer string must exactly match the
character strings in the File->Print Setup dialog boxes, or the strings returned
by the :HARDcopy:PRINters? query.

This example sets the default printer to the second installed printer returned
by the :HARDcopy:PRINters? query.

10 OUTPUT 707;":HARDCOPY:DPRINTER 2"

20 END

This example sets the default printer to the installed printer with the name
"HP Laser".

10 OUTPUT 707;":HARDCOPY:DPRINTER ""HP Laser"""
20 END

18-4

Query

Returned Format

Example

Hardcopy Commands
DPRinter

:HARDcopy :DPRinter?

The :HARDcopy:DPRinter? query returns the current printer number and
string.

[:HARDcopy :DPRinter?]
{<printer_number>, <printer_string>, DEFAULT}<NL>

Or, if there is no default printer (no printers are installed), only a <NL> is
returned.

This example places the current setting for the hard copy printer in the string
variable, Setting$, then prints the contents of the variable to the computer's
screen.

10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707; " :HARDCOPY:DPRinter?"

30 ENTER 707;Setting$

40 PRINT Setting$

50 END

Programs Must Wait After Changing the Default Printer

It takes several seconds to change the default printer. Any programs that try to set
the default printer must wait (10 seconds is a safe amount of time) for the change
to complete before sending other commands. Otherwise, the oscilloscope will
become unresponsive.

18-5

Hardcopy Commands

FACTors
FACTors
Command :HARDcopy :FACTors {{ON|1} | {OFF|0}}
The :HARDcopy:FACTors command determines whether the oscilloscope setup
factors will be appended to screen or graticule images. FACTors ON is the same
as choosing Include Setup Information in the Configure Printer dialog box.
Example This example turns on the setup factors.
10 OUTPUT 707;" :HARDCOPY : FACTORS ON"
20 END
Query :HARDcopy : FACTors?

Returned Format

Example

The :HARDcopy:FACTors? query returns the current setup factors setting.

[:HARDcopy:FACTors] {1|0}<NL>

This example places the current setting for the setup factors in the string
variable, Setting$, then prints the contents of the variable to the computer's
screen.

10 DIM Setting$[50]!Dimension variable
20 OUuTPUT 707; " :HARDCOPY :FACTORS?"

30 ENTER 707;Setting$

40 PRINT Setting$

50 END

18-6

Hardcopy Commands
IMAGe

Command

Example

Query

Returned Format

Example

IMAGe

:HARDcopy : IMAGe {NORMal | INVert}

The :HARDcopy:IMAGe command prints the image normally, inverted, or in
monochrome. IMAGe INVert is the same as choosing Invert Waveform Colors
in the Configure Printer dialog box.

This example sets the hard copy image output to normal.

10 OUTPUT 707; " :HARDCOPY:IMAGE NORMAL"
20 END

:HARDcopy : IMAGe?

The :HARDcopy:IMAGe? query returns the current image setting.

[:HARDcopy: IMAGe] {NORMal | INVert }<NL>

This example places the current setting for the hard copy image in the string
variable, Setting$, then prints the contents of the variable to the computer's
screen.

10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707; " :HARDCOPY:IMAGE?"

30 ENTER 707;Setting$

40 PRINT Setting$

50 END

18-7

Hardcopy Commands
PRINters?

Query

Returned Format

<printer_count>

<printer
_data>

Example

PRINters?

:HARDcopy:PRINters?

The :HARDcopy:PRINters? query returns the currently available printers.

[:HARDcopy : PRINters?]
<printer_count><NL><printer_data><NL>[,<printer_data><NL>]

The number of printers currently installed.

The printer number and the name of an installed printer. The word DEFAULT
appears next to the printer that is the currently selected default printer.

The <printer_data> return string has the following format:
<printer_number>, <printer_string>{, DEFAULT}

This example places the number of installed printers into the variable Count,
loops through it that number of times, and prints the installed printer names to
the computer’s screen.

10 DIM Settings$[50]!Dimension variable
20 OUTPUT 707; " :HARDCOPY:PRINTERS?"

30 ENTER 707;Count

40 TIF Count>0 THEN

50 FOR Printer_number=1 TO Count

60 ENTER 707;Setting$

70 PRINT Setting$

80 NEXT Printer_number

90 END IF

100 END

18-8

19

Histogram Commands

Histograms and the
database

Histogram Commands

The HISTogram commands and queries control the histogram features.
A histogram is a probability distribution that shows the distribution of
acquired data within a user-definable histogram window.

You can display the histogram either vertically, for voltage
measurements, or horizontally, for timing measurements.

The most common use for histograms is measuring and characterizing
noise or jitter on displayed waveforms. Noise is measured by sizing the
histogram window to a narrow portion of time and observing a veritcal
histogram that measures the noise on a waveform. Jitter is measured by
sizing the histogram window to a narrow portion of voltage and observing
a horizontal histogram that measures the jitter on an edge.

These HISTogram commands and queries are implemented in the
Infiniium Oscilloscopes:

e AXIS

e MODE

e SCALe:SIZE

e WINDow:DEFault

e WINDow:SOURce

e WINDow:X1Position|LLIMit
e WINDow:X2Position|RLIMit
e WINDow:Y1Position|BLIMit
e WINDow:Y2Position| TLIMit

The histograms, mask testing, and color grade persistence use a specific
database that uses a different memory area from the waveform record
for each channel. When any of these features are turned on, the
oscilloscope starts building the database. The database is the size of the
graticule area. Behind each pixel is a 21-bit counter that is incremented
each time data from a channel or function hits a pixel. The maximum
count (saturation) for each counter is 2,097,151. You can use the
DISPlay:CGRade:LEVels command to see if any of the counters are close
to saturation.

19-2

Histogram Commands

The database continues to build until the oscilloscope stops acquiring
data or all both features (color grade persistence and histograms) are
turned off. You can clear the database by turning off all three features
that use the database.

The database does not differentiate waveforms from different
channels or functions. If three channels are on and the waveform from
each channel happens to light the same pixel at the same time, the
counter is incremented by three. However, it is not possible to tell
how many hits came from each waveform. To separate waveforms,
you can position the waveforms vertically with the channel offset. By
separating the waveforms, you can avoid overlapping data in the
database caused by multiple waveforms. Even if the display is set to
show only the most recent acquisition, the database keeps track of all
pixel hits while the database is building.

Remember that color grade persistence, mask testing, and histograms
all use the same database. Suppose that the database is building
because color grade persistence is ON; when mask testing or
histograms are turned on, they can use the information already
established in the database as though they had been turned on the
entire time.

To avoid erroneous data, clear the display after you change
oscilloscope setup conditions or DUT conditions and acquire new data
before extracting measurement results.

19-3

Histogram Commands
AXIS

Command

Example

Query

Returned Format

Example

AXIS

:HISTogram:AXIS {VERTical | HORizontal}

The :HISTogram:AXIS command selects the type of histogram. A horizontal
histogram can be used to measure time related information like jitter. A vertical
histogram can be used to measure voltage related information like noise.

This example defines a vertical histogram.

10 OUTPUT 707; " :HISTOGRAM:AXIS VERTICAL"
20 END

:HISTogram:AXIS?

The :HISTogram:AXIS? query returns the currently selected histogram type.

[:HISTogram:AXIS] {VERTical | HORizontal}<NL>

This example returns the histogram type and prints it to the computer’s screen.

10 DIM AxisS$[50]

20 OUTPUT 707;":HISTOGRAM:AXIS?"
30 ENTER 707;Axis$

40 PRINT Axis$

50 END

19-4

Histogram Commands
MODE

Command

Example

Query

Returned Format

Example

MODE

:HISTogram:MODE {OFF | WAVeforms | MEASurement}

The :HISTogram:MODE command selects the histogram mode. The histogram
may be off or set to track the waveforms or measurements.

This example sets the histogram mode to track the waveforms.

10 OUTPUT 707; " :HISTOGRAM:MODE WAVEFORM"
20 END

:HISTogram:MODE?

The :HISTogram:MODE? query returns the currently selected histogram mode.

[:HISTogram:MODE] {OFF | WAVeform | MEASurement }<NL>

This example returns the result of the mode query and prints it to the
computer’s screen.

10 DIM ModeS$[10]

20 OUTPUT 707;" :HISTOGRAM:MODE?"
30 ENTER 707;Mode$

40 PRINT Mode$

50 END

19-5

Histogram Commands

SCALe:SIZE
SCALe:SIZE
Command :HISTogram:SCALe:SIZE <size>
The :HISTogram:SCALe:SIZE command sets histogram size for vertical and
horizontal mode.
<size> The size is from 1.0 to 8.0 for the horizontal mode and from 1.0 to 10.0 for the
vertical mode.
Example This example sets the histogram size to 3.5.
10 OUTPUT 707;" :HISTOGRAM:SCALE:SIZE 3.5"
20 END
Query :HISTogram: SCALe:SIZE?

Returned Format

Example

The :HISTogram:SCALe:SIZE? query returns the correct size of the histogram.

[:HISTogram:SCALe:SIZE] <size><NL>

This example returns the result of the size query and prints it to the computer’s
screen.

10 DIM Size$[50]

20 OUTPUT 707;" :HISTOGRAM:SCALE:SIZE?"
30 ENTER 707;Size$

40 PRINT Size$

50 END

19-6

Histogram Commands
WINDow:DEFault

Command

Example

WINDow:DEFault

:HISTogram:WINDow:DEFault

The :HISTogram: WINDow:DEFault command positions the histogram markers
to a default location on the display. Each marker will be positioned one division
off the left, right, top, and bottom of the display.

This example sets the histogram window to the default position.

10 OUTPUT 707; " :HISTOGRAM:WINDOW : DEFAULT"
20 END

19-7

Histogram Commands
WINDow:SOURce

Command

<N>

Example

Query

Returned Format

Example

WINDow:SOURce

:HISTogram:WINDow: SOURce {CHANnel<N> | FUNCtion<N>
| WMEMory<N>}

The :HISTogram:WINDow:SOURce command selects the source of the
histogram window. The histogram window will track the source’s vertical and
horizontal scale.

For channels: the number represents an integer, 1 through 4.
For waveform memories: 1, 2, 3, or 4.
For functions: 1 or 2

This example sets the histogram window’s source to Channel 1.

10 OUTPUT 707; " :HISTOGRAM:WINDOW: SOURCE CHANNEL1"
20 END

:HISTogram:WINDow: SOURce?

The :HISTogram:WINDow:SOURce? query returns the currently selected
histogram window source.

[:HISTogram:WINDow: SOURce] {CHANnelN | FUNCtionN |
WMEMoryN} <NL>

This example returns the result of the window source query and prints it to the
computer’s screen.

10 DIM Winsour$[50]

20 OUTPUT 707;" :HISTOGRAM:WINDOW: SOURCE?"
30 ENTER 707;Winsours$

40 PRINT Winsour$

50 END

19-8

Histogram Commands
WINDow:X1Position | LLIMit

Command

<x1_position>

Example

Query

Returned Format

Example

WINDow:X1Position | LLIMit

:HISTogram:WINDow:X1Position <xl1_position>

or

:HISTogram:WINDow: LLIMit <x1_position>

The :HISTogram:WINDow:X1Position command moves the X1 marker (left
limit) of the histogram window. The histogram window determines the portion
of the display used to build the database for the histogram. The histogram
window markers will track the scale of the histogram window source.

A real number that represents the left boundary of the histogram window.

This example sets the X1 position to -200 microseconds.

10 OUTPUT 707; " :HISTOGRAM: WINDOW:X1POSITION -200E-6"
20 END

:HISTogram:WINDow:X1Position?

:HISTogram:WINDow:LLIMit?

The :HISTogram:WINDow:X1Position? query returns the value of the X1
histogram window marker.

[:HISTogram:WINDow:X1Position] <xl_position><NL>

This example returns the result of the X1 position query and prints it to the
computer’s screen.

10 DIM X1$[50]

20 OUTPUT 707;":HISTOGRAM:WINDOW:X1POSITION?"
30 ENTER 707;X1$

40 PRINT X1$

50 END

19-9

Histogram Commands
WINDow:X2Position | RLIMit

Command

<x2_position>

Example

Query

Returned Format

Example

WINDow:X2Position | RLIMit

:HISTogram:WINDow:X2Position <x2_position>

or

:HISTogram:WINDow:RLIMit <x2_position>

The :HISTogram:WINDow:X2Position command moves the X2 marker (right
limit) of the histogram window. The histogram window determines the portion
of the display used to build the database used for the histogram. The histogram
window markers will track the scale of the histogram window source.

A real number that represents the right boundary of the histogram window.

This example sets the X2 marker to 200 microseconds.

10 OUTPUT 707; " :HISTOGRAM: WINDOW:X2POSITION 200E-6"
20 END

:HISTogram:WINDow:X2Position?

:HISTogram:WINDow:RLIMit?

The :HISTogram:WINDow:X2Position? query returns the value of the X2
histogram window marker.

[:HISTogram:WINDow:X2Position] <x2_position><NL>

This example returns the result of the X2 position query and prints it to the
computer’s screen.

10 DIM X2S$[50]

20 OUTPUT 707;":HISTOGRAM:WINDOW:X2POSITION?"
30 ENTER 707;X2$

40 PRINT X2$

50 END

19-10

Histogram Commands
WINDow:Y1Position | BLIMit

Command

<yl _position>

Example

Query

Returned Format

Example

WINDow:Y1Position | BLIMit

:HISTogram:WINDow:Y1Position <yl_POSITION>

or

:HISTogram:WINDow:BLIMit <yl_POSITION>

The :HISTogram:WINDow:Y1Position command moves the Y1 marker (bottom
limit) of the histogram window. The histogram window determines the portion
of the display used to build the database used for the histogram. The histogram
window markers will track the scale of the histogram window source.

A real number that represents the bottom boundary of the histogram window.

This example sets the position of the Y1 marker to -2560 mV.

10 OUTPUT 707; " :HISTOGRAM: WINDOW:Y1POSITION -250E-3"
20 END

:HISTogram:WINDow:Y1Position?

:HISTogram:WINDow:BLIMit?

The :HISTogram:WINDow:Y1Position? query returns the value of the Y1
histogram window marker.

[:HISTogram:WINDow:Y1Position] <yl_position><NL>

This example returns the result of the Y1 position query and prints it to the
computer’s screen.

10 DIM Y1S$[50]

20 OUTPUT 707;":HISTOGRAM:WINDOW:Y1POSITION?"
30 ENTER 707;Y1$

40 PRINT Y1$

50 END

19-11

Histogram Commands
WINDow:Y2Position | TLIMit

Command

<y2_position>

Example

Query

Returned Format

Example

WINDow:Y2Position | TLIMit

:HISTogram:WINDow:Y2Position <y2_position>

or

:HISTogram:WINDow: TLIMit <y2_position>

The :HISTogram:WINDow:Y2Position command moves the Y2 marker (top
limit) of the histogram window. The histogram window determines the portion
of the display used to build the database used for the histogram. The histogram
window markers will track the scale of the histogram window source.

A real number that represents the top boundary of the histogram window.

This example sets the position of the Y2 marker to 250 mV.

10 OUTPUT 707; " :HISTOGRAM: WINDOW:Y2POSITION 250E-3"
20 END

:HISTogram:WINDow:Y2Position?

:HISTogram:WINDow: TLIMit?

The :HISTogram:WINDow:Y2Position? query returns the value of the Y2
histogram window marker.

[:HISTogram:WINDow:Y2Position] <y2_position><NL>

This example returns the result of the Y2 position query and prints it to the
computer’s screen.

10 DIM Y2S$[50]

20 OUTPUT 707;":HISTOGRAM:WINDOW:Y2POSITION?"
30 ENTER 707;Y2$

40 PRINT Y25$

50 END

19-12

20

InfiniiScan (ISCan) Commands

InfiniiScan (ISCan) Commands

The ISCan commands and queries control the InfiniiScan feature of the
oscilloscope. InfiniiScan provides several ways of searching through the
waveform data to find unique events.

The ISCan subsystem contains the following commands:

e DELay
e MEASurement
e MODE
e NONMonotonic
e RUNT
e SERial
e ZONE

20-2

InfiniiScan (ISCan) Commands
DELay

Command

OFF

<delay_time>

Example

Query

Returned Format

Example

DELay

:ISCan:DELay {OFF | <delay_time>}

The :ISCan:DELay command sets the delay time from when the hardware
trigger occurs and when InfiniiScan tries to find the waveform event that has
been defined.

Turns off the delay from the hardware trigger.

Sets the amount of time that the InfiniiScan trigger is delayed from the hardware
trigger.

The following example causes the oscilloscope to delay by 1 ps.

10 OUTPUT 707;”:ISCAN:DELay 1E-06"
20 END

:ISCan:DELay?

The query returns the current set delay value.

[:ISCan:DELay] {OFF | <delay_ time>}<NL>

The following example returns the current delay value and prints the result to
the controller’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :ISCAN:DELAY?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-3

InfiniiScan (ISCan) Commands
MEASurement:FAIL

Command
INSide
OUTSide
Example
Query

Returned Format

Example

MEASurement:FAIL

:ISCan:MEASurement :FAIL {INSide | OUTSide}

The :ISCan:MEASurement:FAIL command sets the fail condition for an
individual measurement. The conditions for a test failure are set on the
measurement selected by the :ISCan:MEASurement command.

When a measurement failure is detected by the limit test the oscilloscope
triggers and the trigger action is executed.

INside causes the oscilloscope to fail a test when the measurement results are
within the parameters set by the :ISCan:MEASurement:LIMit and
:ISCan:MEASurement:ULIMit commands.

OUTside causes the oscilloscope to fail a test when the measurement results
exceed the parameters set by the :ISCan:MEASurement:LLIMit and the
:ISCan:MEASurement:ULIMit commands.

The following example causes the oscilloscope to trigger when the
measurements are outside the lower or upper limits.

10 OUTPUT 707;”:ISCAN:MEASUREMENT:FAIL OUTSIDE”
20 END

:ISCan:MEASurement:FAIL?

The query returns the current set fail condition.

[:ISCan:MEASurement:FAIL] {INSide | OUTSide}<NL>

The following example returns the current fail condition and prints the result
to the controller’s screen.

10 DIM FAILS[50]

20 OUTPUT 707;”:ISCAN:MEASUREMENT:FAIL?”
30 ENTER 707;FAILS

40 PRINT FAILS

50 END

20-4

InfiniiScan (ISCan) Commands
MEASurement:LLIMit

Command

<lower_value>

Example

Query

Returned Format

Example

MEASurement:LLIMit

:ISCan:MEASurement :LLIMit <lower_value>

The :ISCan:MEASurement:LLIMit (lower limit) command sets the lower test
limit for the currenly selected measurement. The :ISCan:MEASurement
command selects the measurement used.

A real number.

The following example sets the lower test limit to 1.0.

10 OUTPUT 707;” :ISCAN:MEASUREMENT:LLIMIT 1.0”
20 END

If, for example, you chose to measure volts peak-peak and want the smallest
acceptable signal swing to be one volt, you could use the above command, then

set the measurement limit to trigger when the signal is outside the specified
limit.

:ISCan:MEASurement : LLIMit?

The query returns the current value set by the command.

[:ISCan:MEASurement :LLIMit]<lower_value><NL>

The following example returns the current lower test limit and prints the result
to the controller’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :ISCAN:MEASUREMENT:LLIMIT?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-5

InfiniiScan (ISCan) Commands

MEASurement
MEASurement

Command :ISCan:MEASurement {MEAS1 | MEAS2 | MEAS3 | MEAS4 |
MEASS5}
The :ISCan:MEASurement command selects the current source for
Measurement Limit Test Trigger. It selects one of the active measurements as
referred to by their position in the Measurement tab area at the bottom of the
screen. Measurements are numbered from left to right in the Measurements
tab area of the screen.

Example The following example selects the first measurement as the source for the limit
testing commands.
10 OUTPUT 707; " :ISCAN:MEASUREMENT MEAS1”
20 END

Query :ISCan:MEASurement?

Returned Format

Example

See Also

The query returns the currently selected measurement source.

[:ISCan:MEASurement] {MEAS1 | MEAS2 | MEAS3 | MEAS4 | MEAS5}
<NL>

The following example returns the currently selected measurement source for
the limit testing commands.

10 DIM SOURCES[50]

20 OUTPUT 707;” :ISCAN:MEASUREMENT?”
30 ENTER 707; SOURCES

40 PRINT SOURCES

50 END

Measurements are started by the commands in the Measurement Subsystem.

20-6

InfiniiScan (ISCan) Commands
MEASurement:TEST

Command

Example

Query

Returned Format

Example

MEASurement: TEST

:ISCan:MEASurement :TEST {{ON | 1} {OFF | 0}}

The :ISCan:MEASurement:TEST command enables or disables the
measurement limit test trigger. Selecting ON allows the measurement limit test
trigger to run using the currently selected measurement. The
:ISCan:MEASurement command selects the measurement used.

The following example turns off the limit test function.

10 OUTPUT 707;” :ISCAN:MEASUREMENT:TEST OFF”
20 END

:ISCan:MEASurement : TEST?

The query returns the state of the TEST control.

[:ISCan:MEASurement : TEST] {1 | 0} <NL>

The following example returns the current state of the measurement limit test
trigger and prints the result to the controller’s screen.

10 DIM TESTSI[50]

20 OUTPUT 707;"”:ISCAN:MEASUREMENT:TEST?”
30 ENTER 707;TESTS

40 PRINT TESTS

50 END

20-7

InfiniiScan (ISCan) Commands
MEASurement:ULIMit

Command

<upper_value>

Example

Query

Returned Format

Example

MEASurement:ULIMit

:ISCan:MEASurement :ULIMit <upper_value>

The :ISCan:MEASurement:ULIMit (upper limit) command sets the upper test
limit for the active measurement currently selected by the
ISCan:MEASurement command.

A real number.

The following example sets the upper limit of the currently selected
measurement to 500 mV.

10 OUTPUT 707;” :ISCAN:MEASUREMENT :ULIMIT 500E-3”
20 END

Suppose you are measuring the maximum voltage of a signal with Vmax, and
that voltage should not exceed 500 mV. You can use the above program and set
the :ISCan:MEASurement:FAIL OUTside command to specify that the
oscilloscope will trigger when the voltage exceeds 500 mV.

:ISCan:MEASurement :ULIMit?

The query returns the current upper limit of the limit test.

[:ISCan:MEASurement :ULIMit] <upper_value><NL>

The following example returns the current upper limit of the limit test and prints
the result to the controller’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":ISCAN:MEASUREMENT :ULIMit?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-8

InfiniiScan (ISCan) Commands
MODE

Command
OFF
MEASurement
NONMontonic
RUNT
SERial
ZONE
Example
Query

Returned Format

Example

MODE

:ISCan:MODE {OFF | MEASurement | NONMontonic |
RUNT | SERial | ZONE}

The :ISCan:MODE command selects the type of InfiniiScan trigger mode. The
Measurement, Runt, Zone Qualify, and Non-monotonic Edge InfiniiScan modes
can be set using this command.

Turns off the InfiniiScan trigger mode.

Sets the Measurement Limit trigger mode.
Sets the Non-monotonic edge trigger mode.
Sets the Runt trigger mode.

Sets the Serial trigger mode.

Sets the Zone Qualify trigger mode.

The following example selects the runt trigger.

10 OUTPUT 707;"” :ISCAN:MODE RUNT"”
20 END

:ISCan:MODE?

The query returns the currently selected IniniiScan trigger mode.

[:ISCan:MEASurement] {OFF | MEASurement | NONMonotonic |
RUNT | SERial | ZONE}<NL>

The following example returns the currently selected InfiniiScan trigger mode.

10 DIM MODE$[50]

20 OUTPUT 707;”:ISCAN:MODE?”
30 ENTER 707;MODES

40 PRINT MODES$

50 END

20-9

InfiniiScan (ISCan) Commands
NONMonotonic:EDGE

Command
EITHer
FALLing
RISing
Example
Query

Returned Format

Example

NONMonotonic:EDGE

:ISCan:NONMonotonic:EDGE {EITHer | FALLing | RISing}

The :ISCan:NONMonotonic:EDGE command selects the rising edge, the falling
edge, or either edge for the Non-monotonic edge trigger mode.

Sets the edge used by the Non-monotonic edge trigger to both rising and falling
edges.

Sets the edge used by the Non-monotonic edge trigger to falling edges.

Sets the edge used by the Non-monotonic edge trigger to rising edges.

The following example selects the falling edge non-monotonic trigger.

10 OUTPUT 707;” :ISCAN:NONMONOTONIC: EDGE FALLING”
20 END

: ISCan:NONMonotonic:EDGE?

The query returns the currently selected edge type for the Non-Monotonic Edge
trigger.

[:ISCan:NONMonotonic:EDGE] {EITHer | FALLing | RISing}<NL>

The following example returns the currently selected edge type used for the
Non-monotonic Edge trigger mode.

10 DIM SOURCES[50]

20 OUTPUT 707;"”:ISCAN:NONMONOTONIC:EDGE?”
30 ENTER 707; SOURCES

40 PRINT SOURCES

50 END

20-10

InfiniiScan (ISCan) Commands
NONMonotonic:HYSTeresis

Command

<value>

Example

Query

Returned Format

Example

NONMonotonic:HYSTeresis

:ISCan:NONMonotonic:HYSTeresis <value>

The :ISCan:NONMonotonic:HYSTeresis command sets the hysteresis value
used for the Non-monotonic Edge trigger.

is a real number for the hysteresis.

The following example sets the hysteresis value used by the Non-monotonic
trigger mode to 10 mV.

10 OUTPUT 707;” :ISCAN:NONMONOTONIC:HYSTERESIS 1E-2”"
20 END

: ISCan:NONMonotonic:HYSTersis?

The query returns the hysteresis value used by the Non-monotonic Edge trigger
mode.

[:ISCan:NONMonotonic:HYSTeresis]<value><NL>

The following example returns and prints the value of the hysteresis.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :ISCAN:NONMONOTONIC:HYSTERESIS?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-11

InfiniiScan (ISCan) Commands
NONMonotonic:SOURce

Command

<N>

Example

Query

Returned Format

Example

NONMonotonic:SOURce

: ISCan:NONMonotonic:SOURce CHANnel<N>

The :ISCan:NONMonotonic:SOURce command sets the source used for the
Non-monotonic Edge trigger.

is an integer from 1-4.

The following example sets the source used by the Non-monotonic trigger mode
to channel 1.

10 OUTPUT 707;” :ISCAN:NONMONOTONIC: SOURCE CHANNELL”
20 END

: ISCan:NONMonotonic:SOURce?

The query returns the source used by the Non-monotonic Edge trigger mode.

[: ISCan:NONMonotonic:SOURce] CHANnel<N><NL>

The following example returns the currently selected source for the Non-
monotonic Edge trigger mode.

10 DIM SOURCES$[50]

20 OUTPUT 707;"”:ISCAN:NONMONTONIC:SOURCE?"
30 ENTER 707; SOURCES

40 PRINT SOURCES

50 END

20-12

InfiniiScan (ISCan) Commands
RUNT:HYSTeresis

Command

<value>

Example

Query

Returned Format

Example

RUNT:HYSTeresis

:ISCan:RUNT:HYSTeresis <value>

The :ISCan:RUNT:HYSTeresis command sets the hysteresis value used for the
Runt trigger.

is a real number for the hysteresis.

The following example sets the hysteresis value used by the Runt trigger mode
to 10 mV.

10 OUTPUT 707;” :ISCAN:RUNT:HYSTERESIS 1E-2"
20 END

:ISCan:RUNT:HYSTersis?

The query returns the hysteresis value used by the Runt trigger mode.

[:ISCan:RUNT:HYSTeresis]<value><NL>

The following example returns and prints the value of the hysteresis.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":ISCAN:RUNT:HYSTERESIS?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-13

InfiniiScan (ISCan) Commands
RUNT:LLEVel

Command

<lower_level>

Example

Query

Returned Format

Example

RUNT:LLEVel

:RUNT:LLEVel <lower_level>

The :ISCan:RUNT:LLEVel (lower level) command sets the lower level limit for
the Runt trigger mode.

A real number.

The following example sets the lower level limit to 1.0 V.

10 OUTPUT 707;”:ISCAN:RUNT:LLEVel 1.0”
20 END

:ISCan:RUNT:LLEVel?

The query returns the lower level limit set by the command.

[:ISCan:RUNT:LLEVel] <lower_level><NL>

The following example returns the current lower level used by the Runt trigger
and prints the result to the controller’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":ISCAN:RUNT:LLEVel?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-14

InfiniiScan (ISCan) Commands
RUNT:SOURce

Command

<N>

Example

Query

Returned Format

Example

RUNT:SOURce

:ISCan:RUNT: SOURce CHANnel<N>

The :ISCan:RUNT:SOURce command sets the source used for the Runt trigger.

is an integer from 1-4.

The following example sets the source used by the Runt trigger mode to
channel 1.

10 OUTPUT 707;” :ISCAN:RUNT:SOURCE CHANNELL1”
20 END

:ISCan:RUNT: SOURce?

The query returns the source used by the Runt trigger mode.

[:ISCan:RUNT:SOURce] CHANnel<N><NL>

The following example returns the currently selected source for the Runt trigger
mode.

10 DIM SOURCES[50]

20 OUTPUT 707;”:ISCAN:RUNT:SOURCE?”
30 ENTER 707; SOURCES

40 PRINT SOURCES$

50 END

20-15

InfiniiScan (ISCan) Commands
RUNT:ULEVel

Command

<upper_level>

Example

Query

Returned Format

Example

RUNT:ULEVel

:ISCan:RUNT:ULEVel <upper_level>

The :ISCan:RUNT:ULEVel (upper level) command sets the upper level limit for
the Runt trigger mode.

A real number.

The following example sets the upper level value used by the Runt trigger mode
to 500 mV.

10 OUTPUT 707;”:ISCAN:RUNT:ULEVEL 500E-3"
20 END

:ISCan:RUNT:ULEVel?

The query returns the current upper level value used by the Runt trigger.

[:ISCan:RUNT:ULEVel] <upper_level><NL>

The following example returns the current upper level used by the Runt trigger
and prints the result to the controller’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":ISCAN:RUNT:ULEVel?"

30 ENTER 707;Value

40 PRINT Value

50 END

20-16

InfiniiScan (ISCan) Commands
SERial:PATTern

SERial:PATTern

Command :ISCan:SERial:PATTern <pattern>

The :ISCan:SERial:PATTern command sets the pattern used for the Serial
trigger.

<pattern> isal, 0, or X binary character string of up to 80 characters. The pattern can
only be expressed in the binary format.

Example The following example sets the pattern used by the Serial trigger to
101100.
10 OUTPUT 707;”:ISCAN:SERIAL:PATTERN ““101100"""
20 END

Query :ISCan:SERial:PATTern?

The query returns the pattern used by the Serial trigger mode.

Returned Format [:ISCan:SERial:PATTern]<pattern><NL>

Example The following example returns the currently selected pattern for the Serial
trigger mode.

10 DIM PATTERNS([80]

20 OUTPUT 707;” :ISCAN:SERIAL:PATTERN?”
30 ENTER 707; PATTERNS

40 PRINT PATTERNS

50 END

20-17

InfiniiScan (ISCan) Commands
SERial:SOURce

SERial:SOURce

Command :ISCan:SERial: SOURce CHANnel<N>

The :ISCan:SERial:SOURce command sets the source used for the Serial trigger.

<N> is an integer from 1-4.

Example The following example sets the source used by the Serial trigger mode to
channel 1.
10 OUTPUT 707;”:ISCAN:SERIAL:SOURCE CHANNELL”
20 END

Query :ISCan:SERial:SOURce?

The query returns the source used by the Serial trigger mode.

Returned Format [:ISCan:SERial:SOURce] CHANnel<N><NL>

Example The following example returns the currently selected source for the Serial
trigger mode.

10 DIM SOURCES[50]

20 OUTPUT 707;"” :ISCAN:SERIAL:SOURCE?”
30 ENTER 707; SOURCES

40 PRINT SOURCES$

50 END

20-18

InfiniiScan (ISCan) Commands
ZONE<N>:MODE

Command

<N>

Example

Query

Returned Format

Example

ZONE<N>:MODE

:ISCan:ZONE<N>:MODE {INTersect | NOTintersect}

The :ISCan:ZONE<N>:MODE command sets the Zone Qualify trigger mode.
For the INTersect mode, the waveform must enter the zone region to qualify as
a valid waveform. For NOTintersect mode, the waveform cannot enter a zone
region to qualify as a valid waveform.

is an integer from 1-4.

The following example sets the mode to intersect for zone 1.

10 OUTPUT 707;”:ISCAN:ZONEL:MODE INTERSECT”
20 END

: ISCan: ZONE<N>:MODE?

The query returns the mode used by zone 1.

[:ISCan:ZONE<N>:MODE] {INTersect | NOTintersect}<NL>

The following example returns the currently selected mode for zone 1.

10 DIM MODES$[50]

20 OUTPUT 707;"”:ISCAN:ZONE1:MODE?"
30 ENTER 707;MODES

40 PRINT MODES

50 END

20-19

InfiniiScan (ISCan) Commands
ZONE<N>:PLACement

Command

<N>
<width>
<height>
<x_center>

<y_center>

Example

Query

Returned Format

Example

ZONE<N>:PLACement

:ISCan: ZONE<N>: PLACement
<width>, <height>, <x_center>,<y_ center>

The :ISCan:ZONE<N>:PLACement command sets the location and size of a
zone for the zone qualify trigger mode.

is an integer from 1-4.

a real number defining the width of a zone in seconds.

is a real number defining the height of a zone in volts.

is a real number defining the x coordinate of the center of the zone in seconds.

is a real number defining the y coordinate of the center of the zone in volts.

The following example sets the size of zone 1 to be 500 ps wide and 0.5 volts
high and centered about the xy coordinate of 1.5 ns and 1 volt.

10 OUTPUT 707;”:ISCAN:ZONEL:PLACEMENT 500e-12,0.5,1.5e9,1”
20 END

: ISCan: ZONE<N>: PLACement?

The query returns the placement values used by zone 1.

[:ISCan:ZONE<N>:PLACement]<width>, <height>, <x_center>,
<y_center><NL>

The following example returns the current placement values for zone 1.

10 DIM PLACEMENTS[50]

20 OUTPUT 707;"”:ISCAN:ZONE1:PLACEMENT?"”
30 ENTER 707; PLACEMENTS

40 PRINT PLACEMENTS

50 END

20-20

InfiniiScan (ISCan) Commands
ZONE:SOURce

Command

<N>

Example

Query

Returned Format

Example

ZONE:SOURce

:ISCan:ZONE: SOURce CHANnel<N>

The :ISCan:ZONE:SOURce command sets the source used for the zone qualify
trigger.

is an integer from 1-4.

The following example sets the source used by the zone qualify trigger to
channel 1.

10 OUTPUT 707;”:ISCAN:ZONE:SOURCE CHANNELL”
20 END

:ISCan:ZONE: SOURce?

The query returns the source used by the zone qualify trigger.

[:ISCan:ZONE: SOURce] CHANnel<N><NL>

The following example returns the currently selected source for zone qualify
trigger.

10 DIM SOURCES$[50]

20 OUTPUT 707;"”:ISCAN:ZONE:SOURCE?”
30 ENTER 707; SOURCES

40 PRINT SOURCES

50 END

20-21

InfiniiScan (ISCan) Commands
ZONE<N>:STATe

ZONE<N>:STATe

Command :ISCan:ZONE<N>:STATe {{ON | 1} | {OFF | 0}}

The :ISCan:ZONE<N>:STATe command turns a zone off or on for the zone
qualify trigger.

<N> is an integer from 1-4.

Example The following example turns on zone 2.
10 OUTPUT 707;”:ISCAN:ZONE2:STATE ON”
20 END

Query :ISCan: ZONE<N>: STATe?

The query returns the state value for a zone.

Returned Format [:ISCan:ZONE<N>:STATe] {1 | 0}<NL>

Example The following example returns the current state value for zone 2.

10 DIM STATES[50]

20 OUTPUT 707;” :ISCAN:ZONE2:STATE?”
30 ENTER 707;STATES

40 PRINT STATES

50 END

20-22

21

Limit Test Commands

Limit Test Commands

The Limit Test commands and queries control the limit test features of
the oscilloscope. Limit testing automatically compares measurement
results with pass or fail limits. The limit test tracks up to four
measurements. The action taken when the test fails is also controlled
with commands in this subsystem.

The Limit Test subsystem contains the following commands:

e FAIL

e LLIMit (Lower Limit)
e MEASurement

e RESults?

e TEST

e ULIMit (Upper Limit)

Limit Test Commands
FAIL

Command
INSide
OUTSide
Example
Query

Returned Format

Example

FAIL

:LTESt:FAIL {INSide | OUTSide}

The :LTESt:FAIL command sets the fail condition for an individual
measurement. The conditions for a test failure are set on the source selected
with the last LTESt:MEASurement command.

When a measurement failure is detected by the limit test, the fail action
conditions are executed, and there is the potential to generate an SRQ.

FAIL INside causes the oscilloscope to fail a test when the measurement results
are within the parameters set by the LLTESt:LIMit and LTESt:ULIMit
commands.

FAIL OUTside causes the oscilloscope to fail a test when the measurement
results exceed the parameters set by LTESt:LLIMit and LTESt:ULIMit
commands.

The following example causes the oscilloscope to fail a test when the
measurements are outside the lower and upper limits.

10 OUTPUT 707;”:LTEST:FAIL OUTSIDE”
20 END

:LTESt :FAIL?

The query returns the current set fail condition.

[:LTESt:FAIL] {INSide | OUTSide}<NL>

The following example returns the current fail condition and prints the result
to the controller’s screen.

10 DIM FAILS[50]

20 OUTPUT 707;”:LTEST:FAIL?”
30 ENTER 707;FAILS

40 PRINT FAILS

50 END

21-3

Limit Test Commands
LLIMit

Command

LLIMit

:LTESt:LLIMit <lower_value>

The :LTESt:LLIMit (Lower LIMit) command sets the lower test limit for the
active measurement currently selected by the :LTESt:MEASurement
command.

<lower_value> A real number.

Example

Query

Returned Format

Example

The following example sets the lower test limit to 1.0.

10 OUTPUT 707;” :LTEST:LLIMIT 1.0”"

20 END

If, for example, you chose to measure volts peak-peak and want the smallest
acceptable signal swing to be one volt, you could use the above command, then
set the limit test to fail when the signal is outside the specified limit.

:LTESt:LLIMit?

The query returns the current value set by the command.

[:LTESt:LLIMit]<lower_value><NL>

The following example returns the current lower test limit and prints the result
to the controller’s screen.

10 DIM LLIMSI[50]

20 ouTpUT 707;”:LTEST:LLIMIT?”
30 ENTER 707;LLIMS

40 PRINT LLIMS

50 END

21-4

Limit Test Commands
MEASurement

Command

Example

Query

Returned Format

Example

See Also

MEASurement

:LTESt : MEASurement {MEAS1 | MEAS2 | MEAS3 | MEAS4 |
MEASS }

The :LTESt:MEASurement command selects the current source for Limit Test
for the ULIMit and LLIMit commands. It selects one of the active measurements
as referred to by their position in the measurement window on the bottom of
the screen. Measurements are numbered from left to right.

The following example selects the first measurement as the source for the limit
testing commands.

10 OUTPUT 707;”:LTEST:MEASUREMENT MEAS1”
20 END

:LTESt :MEASurement?

The query returns the currently selected measurement source.

[:LTESt:MEASurement] {MEAS1 | MEAS2 | MEAS3 | MEAS4 | MEAS5}
<NL>

The following example returns the currently selected measurement source for
the limit testing commands.

10 DIM SOURCES[50]

20 OUTPUT 707;”:LTEST:MEASUREMENT? "
30 ENTER 707;SOURCES

40 PRINT SOURCES$

50 END

Measurements are started in the Measurement Subsystem.

21-5

Limit Test Commands
RESults?

Query

Returned Format

<fail min>

<fail_max>

<num_meas>

Example

See Also

RESults?

:LTESt:RESults? {MEAS1 | MEAS2 | MEAS3 | MEAS4 |
MEASS }

The query returns the measurement results for selected measurement. The
values returned are the failed minimum value (Fail Min), the failed maximum
value (Fail Max), and the total number of measurements made (# of Meas).

[:LTESt:RESults] <fail_min>,<fail_max>, <num_meas><NL>

A real number representing the total number of measurements that have failed
the minimum limit.

A real number representing the total number of measurements that have failed
the maximum limit.

A real number representing the total number of measurements that have been
made.

The following example returns the values for the limit test of measurement 1.

10 DIM RESULTSS[50]

20 OUTPUT 707;”:LTEST:RESults? MEASL”
30 ENTER 707;RESULTSS

40 PRINT RESULTSS

50 END

Measurements are started in the Measurement Subsystem.

21-6

Limit Test Commands
TEST

Command

Example

Query

Returned Format

Example

TEST

:LTESt:TEST {{ON | 1} {OFF | 0}}

The LTESt:TEST command controls the execution of the limit test function.
ON allows the limit test to run over all of the active measurements. When the
limit test is turned on, the limit test results are displayed on screen in a window
below the graticule.

The following example turns off the limit test function.

10 OUTPUT 707;” :LTEST:TEST OFF”
20 END

:LTESt: TEST?

The query returns the state of the TEST control.

[:LTESt:TEST] {1 | 0} <NL>

The following example returns the current state of the limit test and prints the
result to the controller’s screen.

10 DIM TESTS$[50]

20 OUTPUT 707;”:LTEST:TEST?”

30 ENTER 707;TESTS$

40 PRINT TESTS

50 END

The result of the MEAS:RESults? query has two extra fields when
LimitTESt:TEST is ON (failures, total). Failures is a number and total is the
total number of measurements made.

21-7

Limit Test Commands
ULIMit

Command

<upper_value>

Example

Query

Returned Format

Example

ULIMit

:LTESt :ULIMit <upper_value>

The :LTESt:ULIMit (Upper LIMit) command sets the upper test limit for the
active measurement currently selected by the last :LTESt:MEASurement
command.

A real number.

The following example sets the upper limit of the currently selected
measurement to 500 milli.

10 OuUTPUT 707;” :LTEST:ULIMIT 500E-3”"
20 END

Suppose you are measuring the maximum voltage of a signal with Vmax, and
that voltage should not exceed 500 mV. You can use the above program and set
the LTESt:FAIL OUTside command to specify that the limit subsystem will fail
a measurement when the voltage exceeds 500 mV.

:LTESt :ULIM1t?

The query returns the current upper limit of the limit test.

[:LTESt:ULIMit] <upper_value><NL>

The following example returns the current upper limit of the limit test and prints
the result to the controller’s screen.

10 DIM ULIMS[50]

20 OouTPUT 707;”:LTEST:ULIMIT?”
30 ENTER 707;ULIMS

40 PRINT ULIMS

50 END

21-8

22

Marker Commands

Marker Commands

The commands in the MARKer subsystem specify and query the settings
of the time markers (X axis) and current measurement unit markers
(volts, amps, and watts for the Y axis). You typically set the Y-axis
measurement units using the :CHANnel:UNITs command.

These MARKer commands and queries are implemented in the Infiniium
Oscilloscopes:

e CURsor?

e MEASurement:READout
e MODE

e TDELta?

e TSTArt

e TSTOp

e VDELta?

e VSTArt

e VSTOp

e X1Position

e X2Position

e X1Ylsource

e X2Y2source

e XDELta?

¢ Y1Position

e YZPosition

e YDELta?

Guidelines for Using Queries in Marker Modes

In Track Waveforms mode, use :MARKer:CURSor? to track the position of the
waveform. In Manual Markers and Track Measurements Markers modes, use other
queries, such as the TSTArt? and TSTOp?, and VSTArt? and VSTOp? queries. If you
use :MARKer:CURSor? when the oscilloscope is in either Manual Markers or Track
Measurements Markers modes, it will put the oscilloscope in Track Waveforms
mode, regardless of the mode previously selected.

22-2

Marker Commands
CURSor?

Query

Returned Format

Example

CAUTION

CURSor?

:MARKer :CURSor? {DELTa | STARt | STOP}

The :MARKer:CURSor? query returns the time and current measurement unit
values of the specified marker (if markers are in Track Waveforms mode) as an
ordered pair of time and measurement unit values.

e [f DELTA is specified, the value of delta Y and delta X are returned.
e [f START is specified, marker A’s x-to-y positions are returned.
e [f STOP is specified, marker B’s x-to-y positions are returned.

[:MARKer:CURSor] {DELTa | STARt | STOP}
{<Ax, Ay> | <Bx, By> | <deltaX, deltaY>}<NL>

This example returns the current position of the X cursor and measurement
unit marker 1 to the string variable, Position$. The program then prints the
contents of the variable to the computer's screen.

10 DIM Position$[50]!Dimension variable

20 OUTPUT 707;":MARKER:CURSOR? START"

30 ENTER 707;Position$

40 PRINT Position$

50 END

The :MARKer:CURSor? query may change marker mode and results.
In Track Waveforms mode, use :MARKer:CURSor? to track the position of the
waveform. In Manual Markers and Track Measurements Markers modes, use
other marker queries, such as the TSTArt? and TSTOp?, and VSTArt? and
VSTOp? queries.

If you use :MARKer:CURSor? when the oscilloscope is in either Manual
Markers or Track Measurements Markers modes, it will put the oscilloscope
in Track Waveforms mode, regardless of the mode previously selected. In
addition, measurement results may not be what you expected.

22-3

Marker Commands
MEASurement:READout

Command

ON|1

OFF |0

Query

Returned Format

Example

MEASurement:READout

:MARKer :MEASurement : READout {{ON|1} | {OFF|0}}

The :MARKer:MEASurement:READout command controls the display of the
marker position values.

Shows marker position values.

Turns off marker position values.

:MARKer :MEASurement : READout?

The :MARKer:MEASurement:READout? query returns the current display of
the marker position values.

{:MARKer :MEASurement :READout] {1 | 0} <NL>

This example displays the marker position values.

10 OUTPUT 707; " :MARKER:MEASUREMENT : READOUT ON"
20 END

22-4

Marker Commands
MODE

Command

OFF
MANual
WAVeform

MEASurement

Example

Query

Returned Format

Example

MODE

:MARKer :MODE {OFF | MANual | WAVeform | MEASurement}

The :MARKer:MODE command sets the marker mode.
Removes the marker information from the display.
Enables manual placement of markers A and B.
Tracks the current waveform.

Tracks the most recent measurement.

This example sets the marker mode to waveform.

10 OUTPUT 707; " :MARKER:MODE WAVEFORM"
20 END

:MARKer :MODE?

The :MARKer:MODE? query returns the current marker mode.

[:MARKer:MODE] {OFF | MANual | WAVeform | MEASurement}<NL>

This example places the current marker mode in the string variable, Selection$,
then prints the contents of the variable to the computer's screen.

10 DIM Selection$[50]!Dimension variable
20 OouTpPUT 707; " :MARKER:MODE?"

30 ENTER 707;Selection$

40 PRINT Selection$

50 END

22-5

Marker Commands
TDELta?

Query

Returned Format

<time>

Example

TDELta?

:MARKer : TDELta?

The :MARKer:TDELta? query returns the time difference between Ax and Bx
time markers. The :MARKer:XDELta command described in this chapter does
also.

Use :MARKer:XDELta? Instead of :MARKer:TDELta?

The :MARKer:TDELta? query performs the same function as the :MARKer:XDELta?
query. The :MARKer:TDELta? query is provided for compatibility with programs
written for older oscilloscopes. You should use :MARKer:XDELta? for new
programs.

[:MARKer:TDELta] <time><NL>

The time difference between Ax and Bx time markers.

This example places the time difference between the Ax and Bx markers in the
numeric variable, Time, then prints the contents of the variable to the
computer's screen. Notice that this example uses the :MARKer:XDELta? query
instead of the :MARKer:TDELta? query.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :MARKER:XDELTA?"

30 ENTER 707;Time

40 PRINT Time

50 END

Turn Headers Off

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

22-6

Marker Commands
TSTArt

Command

<AxX_position>

Example

Query

Returned Format

TSTArt

:MARKer:TSTArt <Ax_position>

The :MARKer:TSTArt command sets the Ax marker position. The
:MARKer:X1Position command described in this chapter also sets the
Ax marker position.

Use :MARKer:X1Position Instead of :MARKer:TSTArt

The :MARKer:TSTArt command and query perform the same function as the
:MARKer:X1Position command and query. The :MARKer:TSTArt command is
provided for compatibility with programs written for previous oscilloscopes. You
should use :MARKer:X1Position for new programs.

A real number for the time at the Ax marker, in seconds.

This example sets the Ax marker at 90 ns. Notice that this example uses the
X1Position command instead of TSTArt.

10 OUTPUT 707;":MARKER:X1POSITION 90E-9"
20 END

:MARKer:TSTArt?

The :MARKer:TSTArt? query returns the time at the Ax marker.

[:MARKer:TSTArt] <Ax_position><NL>

22-7

Marker Commands
TSTArt

Example This example places the current setting of the Ax marker in the numeric
variable, Setting, then prints the contents of the variable to the computer's
screen. Notice that this example uses the :MARKer:X1Position? query instead
of the :MARKer:TSTArt? query.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off"
20 OUTPUT 707;" :MARKER:X1POSITION?"

30 ENTER 707;Setting

40 PRINT Setting

50 END

Do Not Use TST as the Short Form of TSTArt and TSTOp

The short form of the TSTArt command and query does not follow the defined
convention for short form commands. Because the short form, TST, is the same for
TSTArt and TSTOp, sending TST produces an error. Use TSTA for TSTArt.

22-8

Marker Commands
TSTOp

Command

TSTOp

:MARKer :TSTOp <Bx_position>

The :MARKer:TSTOp command sets the Bx marker position. The
:MARKer:X2Position command described in this chapter also sets the
Bx marker position.

Use :MARKer:X2Position Instead of :MARKer:-TSTOp

The :MARKer:TSTOp command and query perform the same function as the
:MARKer:X2Position command and query. The :MARKer:-TSTOp command is
provided for compatibility with programs written for previous oscilloscopes.

You should use :MARKer:X2Position for new programs.

<Bx_position> A real number for the time at the Bx marker, in seconds.

Example

This example sets the Bx marker at 190 ns. Notice that this example uses the
X2Position command instead of TSTOp.

10 OUTPUT 707;":MARKER:X2POSITION 190E-9"
20 END

22-9

Query

Returned Format

Example

Marker Commands
TSTOp

:MARKer :TSTOp?

The :MARKer:TSTOp? query returns the time at the Bx marker position.

[:MARKer:TSTOp] <Bx_position><NL>

This example places the current setting of the Bx marker in the numeric
variable, Setting, then prints the contents of the variable to the computer's
screen. Notice that this example uses the :MARKer:X2Position? query instead
of the :MARKer:TSTOp? query.

10
20
30
40
50

OUTPUT 707;" :SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :MARKER:X2POSITION?"

ENTER 707;Setting

PRINT Setting

END

Do Not Use TST as the Short Form of TSTArt and TSTOp

The short form of the TSTOp command and query does not follow the defined
convention for short form commands. Because the short form, TST, is the same for
TSTArt and TSTOp, sending TST produces an error. Use TSTO for TSTOp.

22-10

Marker Commands
VDELta?

Query

Returned Format

<value>

Example

VDELta?

:MARKer :VDELta?

The :MARKer:VDELta? query returns the current measurement unit difference
between markers Ay and By. The :MARKer:YDELta? query described in this
chapter does also.

Use :MARKer:YDELta? Instead of :MARKer:VDELta?

The :MARKer:VDELta? query performs the same function as the :MARKer:YDELta?
query. The :MARKer:VDELta? query is provided for compatibility with programs
written for previous oscilloscopes. You should use the :MARKer:YDELta? query for
new programs.

[:MARKer :VDELta] <value><NL>

Current measurement unit difference between markers Ay and By.

This example returns the voltage difference between Ay and By to the numeric
variable, Volts, then prints the contents of the variable to the computer's screen.
Notice that this example uses the :MARKer:YDELta? query instead of the
:MARKer:VDELta? query.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off

20 OUTPUT 707; " :MARKER:YDELTA?"

30 ENTER 707;Volts

40 PRINT Volts

50 END

22-11

Marker Commands
VSTArt

VSTArt

Command :MARKer:VSTArt <Ay position>

The :MARKer:VSTArt command sets the Ay marker position and moves the
Ay marker to the specified measurement unit value on the specified source.
The :MARKer:Y1Position command described in this chapter does also.

Use :MARKer:Y1Position Instead of :MARKer:VSTArt

The :MARKer:VSTArt command and query perform the same function as the
:MARKer:Y1Position command and query. The :MARKer:VSTArt command is
provided for compatibility with programs written for previous oscilloscopes. You
should use :MARKer:Y1Position for new programs.

<Ay_position> A real number for the current measurement unit value at Ay (volts, amps, or
watts).

Example This example sets Ay to —10 mV. Notice that this example uses the Y1Position
command instead of VSTArt.

10 OUTPUT 707;":MARKER:Y1POSITION —-10E-3"
20 END

Query :MARKer :VSTArt?

The :MARKer:VSTArt? query returns the current measurement unit level of Ay.

Returned Format [:MARKer:VSTArt] <Ay position><NL>

22-12

Example

Marker Commands
VSTArt

This example returns the voltage setting for Ay to the numeric variable, Value,
then prints the contents of the variable to the computer's screen. Notice that
this example uses the :MARKer:Y1Position? query instead of the
:MARKer:VSTArt? query.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707; " :MARKER:Y1POSITION?"

ENTER 707;Value

PRINT Value

END

Do Not Use VST as the Short Form of VSTArt and VSTOp

The short form of the VSTArt command and query does not follow the defined
convention for short form commands. Because the short form, VST, is the same for
VSTArt and VSTOp, sending VST produces an error. Use VSTA for VSTArt.

22-13

Marker Commands
VSTOp

VSTOp

Command :MARKer :VSTOp <By_position>

The :MARKer:VSTOp command sets the By marker position and moves By to
the specified measurement unit on the specified source.

The :MARKer:Y2Position command described in this chapter does also.

Use :MARKer:Y2Position Instead of :MARKer:VSTOp

The :MARKer:VSTOp command and query perform the same function as the
:MARKer:Y2Position command and query. The :MARKer:-VSTOp command is
provided for compatibility with programs written for previous oscilloscopes.
You should use :MARKer:Y2Position for new programs.

<By_position> A real number for the current measurement unit value at By (volts, amps, or
watts).

Example This example sets By to -100 mV. Notice that this example uses the
:MARKer:Y2Position command instead of :MARKer:VSTOp.

10 OUTPUT 707;":MARKER:Y2POSITION -100E-3"
20 END

Query :MARKer : VSTOp?

The :MARKer:VSTOp? query returns the current measurement unit level at By.

Returned Format [:MARKer:VSTOp] <By_position><NL>

22-14

Example

Marker Commands
VSTOp

This example returns the voltage at By to the numeric variable, Value, then
prints the contents of the variable to the computer's screen. Notice that this

example uses the :MARKer:Y2Position? query instead of the :MARKer:VSTOp?
query.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707; " :MARKER:Y2POSITION?"

ENTER 707;Value

PRINT Value

END

Do Not Use VST as the Short Form of VSTArt and VSTOp

The short form of the VSTOp command and query does not follow the defined
convention for short form commands. Because the short form, VST, is the same for
VSTArt and VSTOp, sending VST produces an error. Use VSTO for VSTOp.

22-15

Marker Commands
X1Position

X1Position

Command :MARKer:X1Position <Ax position>

The :MARKer:X1Position command sets the Ax marker position, and moves the
Ax marker to the specified time with respect to the trigger time.

<Ax_position> A real number for the time at the Ax marker in seconds.

Example This example sets the Ax marker to 90 ns.
10 OUTPUT 707;":MARKER:X1POSITION 90E-9"
20 END

Query :MARKer:X1Position?

The :MARKer:X1Position? query returns the time at the Ax marker position.

Returned Format [:MARKer:X1Position] <Ax_position><NL>

Example This example returns the current setting of the Ax marker to the numeric
variable, Value, then prints the contents of the variable to the computer's
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :MARKER:X1POSITION?"

30 ENTER 707;Value

40 PRINT Value

50 END

See Also :MARKer:TSTArt

22-16

Marker Commands
X2Position

Command

<Bx_position>

Example

Query

Returned Format

Example

X2Position

:MARKer:X2Position <Bx_position>

The :MARKer:X2Position command sets the Bx marker position and moves the
Bx marker to the specified time with respect to the trigger time.

A real number for the time at the Bx marker in seconds.

This example sets the Bx marker to 90 ns.

10 OUTPUT 707;" :MARKER:X2POSITION 90E-9"
20 END

:MARKer:X2Position?

The :MARKer:X2Position? query returns the time at Bx marker in seconds.

[:MARKer:X2Position] <Bx_position><NL>

This example returns the current position of the Bx marker to the numeric
variable, Value, then prints the contents of the variable to the computer's
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :MARKER:X2POSITION?"

30 ENTER 707;Value

40 PRINT Value

50 END

22-17

Marker Commands
X1Y1source

Command

<N>

Example

Query

Returned Format

Example

X1Y1source

:MARKer:X1Ylsource {CHANnel<N> | FUNCtion<N> |
WMEMory<N>}

The :MARKer:X1Y1source command sets the source for the Ax and Ay markers.
The channel you specify must be enabled for markers to be displayed. If the
channel, function, or waveform memory that you specify is not on, an error
message is issued and the query will return channel 1.

CHANnRel<N> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveform memory.

This example selects channel 1 as the source for markers Ax and Ay.

10 OUTPUT 707; " :MARKER:X1Y1SOURCE CHANNEL1"
20 END

:MARKer:X1lYlsource?

The :MARKer:X1Y1source? query returns the current source for markers
Ax and Ay.

[:MARKer:X1Ylsource] {CHANnel<N> | FUNCtion<N> |
WMEMory<N>} <NL>

This example returns the current source selection for the Ax and Ay markers
to the string variable, Selection$, then prints the contents of the variable to the
computer's screen.

10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707; " :MARKER:X1Y1SOURCE?"

30 ENTER 707;Selection$

40 PRINT Selection$

50 END

22-18

Marker Commands
X2Y2source

Command

<N>

Example

Query

Returned Format

Example

X2Y2source

:MARKer:X2Y2source {CHANnel<N> | FUNCtion<N> |
WMEMory<N>}

The :MARKer:X2Y2source command sets the source for the Bx and By markers.
The channel you specify must be enabled for markers to be displayed. If the
channel, function, or waveform memory that you specify is not on, an error
message is issued and the query will return channel 1.

CHANnRel<N> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.

An integer, 1 - 4, for all other Infiniium Oscilloscope models.
FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveform memory.

This example selects channel 1 as the source for markers Bx and By.

10 OUTPUT 707; " :MARKER:X2Y2SOURCE CHANNEL1"
20 END

:MARKer :X2Y2source?

The :MARKer:X2Y2source? query returns the current source for markers
Bx and By.

[:MARKer:X2Y2source] {CHANnel<N> | FUNCtion<N> |
WMEMory<N>} <NL>

This example returns the current source selection for the Bx and By markers
to the string variable, Selection$, then prints the contents of the variable to the
computer's screen.

10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707; " :MARKER:X2Y2SOURCE?"

30 ENTER 707;Selection$

40 PRINT Selection$

50 END

22-19

Marker Commands
XDELta?

Query

Returned Format

<time>

Example

XDELta?

:MARKer :XDELta?

The :MARKer:XDELta? query returns the time difference between Ax and Bx
time markers.

Xdelta = time at Bx — time at Ax

[:MARKer :XDELta] <time><NL>

Time difference between Ax and Bx time markers in seconds.

This example returns the current time between the Ax and Bx time markers to
the numeric variable, Time, then prints the contents of the variable to the
computer's screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707;" :MARKER:XDELTA?"

ENTER 707;Time

PRINT Time

END

22-20

Marker Commands
Y1Position

Command

<Ay _position>

Example

Query

Returned Format

Example

Y1Position

:MARKer:Y1Position <Ay_position>

The :MARKer:Y1Position command sets the Ay marker position on the specified
source.

A real number for the current measurement unit value at Ay (volts, amps, or
watts).

This example sets the Ay marker to 10 mV.

10 OUTPUT 707;" :MARKER:Y1POSITION 10E-3"
20 END

:MARKer:Y1lPosition?

The :MARKer:Y1Position? query returns the current measurement unit level at
the Ay marker position.

[:MARKer:Y1Position] <Ay_position><NL>

This example returns the current setting of the Ay marker to the numeric
variable, Value, then prints the contents of the variable to the computer's
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :MARKER:Y1POSITION?"

30 ENTER 707;Value

40 PRINT Value

50 END

22-21

Marker Commands
Y2Position

Command

<By_position>

Example

Query

Returned Format

Example

Y2Position

:MARKer:Y2Position <By_position>

The :MARKer:Y2Position command sets the By marker position on the specified
source.

A real number for the current measurement unit value at By (volts, amps, or
watts).

This example sets the By marker to -100 mV.

10 OUTPUT 707; " :MARKER:Y2POSITION -100E-3"
20 END

:MARKer:Y2Position?

The :MARKer:Y2Position? query returns the current measurement unit level at
the By marker position.

[:MARKer:Y2Position] <By_position><NL>

This example returns the current setting of the By marker to the numeric
variable, Value, then prints the contents of the variable to the computer's
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707; " :MARKER:Y2POSITION?"

30 ENTER 707;Value

40 PRINT Value

50 END

22-22

Marker Commands
YDELta?

Query

Returned Format

<value>

Example

YDELta?

:MARKer:YDELta?

The :MARKer:YDELta? query returns the current measurement unit difference
between Ay and By.

Vdelta = value at By — value at Ay

[:MARKer:YDELta] <value><NL>

Measurement unit difference between Ay and By.

This example returns the voltage difference between Ay and By to the numeric
variable, Volts, then prints the contents of the variable to the computer's screen.

10
20
30
40
50

OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
OUTPUT 707; " :MARKER:YDELTA?"

ENTER 707;Volts

PRINT Volts

END

22-23

22-24

23

Mask Test Commands

Mask Test Commands

The MTESt subsystem commands and queries control the mask test
features. Mask Testing automatically compares measurement results
with the boundaries of a set of polygons that you define. Any waveform
or sample that falls within the boundaries of one or more polygons is
recorded as a failure.

These MTESt commands and queries are implemented in the Infiniium
Oscilloscopes:

e ALIGn

e AlignFIT

e AMASk:CREate

e AMASKk:SOURce

e AMASK:SAVE | STORe
e AMASK:UNITs

e AMASk:XDELta

e AMASk:YDELta

e AUTO

e AVERage

e AVERage:COUNt

e COUNt:FAILures?

e COUNt:FWAVeforms?
e COUNt:WAVeforms?
e DELete

e ENABIe

e FOLDing (Clock Recovery software only)
e HAMPIlitude

¢ [MPedance

e [NVert

e LAMPIlitude

e LOAD

e NREGions?

23-2

PROBe:IMPedance?
RUMode
RUMode:SOFailure
SCALe:BIND
SCALe:X1
SCALe:XDELta
SCALe:Y1
SCALe:Y2

SOURce

STARt | STOP
STIMe

TITLe?
TRIGger:SOURce

23-3

Mask Test Commands
ALIGn

ALIGn

Command :MTESt :ALIGn

The :MTESt:ALIGn command automatically aligns and scales the mask to the
current waveform on the display. The type of mask alignment performed
depends on the current setting of the Use File Setup When Aligning control.
See the :MTESt:AUTO command for more information.

Example This example aligns the current mask to the current waveform.
10 Output 707;":MTEST:ALIGN"
20 END

23-4

Mask Test Commands
AlignFIT

Command

Table 23-1

AlignFIT

:MTESt:AlignFIT {EYEAMI | EYECMI | EYENRZ | FANWidth
| FAPeriod | FAPWidth | FYNwidth | FYPwWidth | N