Security Features

Agilent Technologies
Signal Generators

This guide applies to the following Agilent signal generator models:

Agilent MXG:
- N5161A (firmware revision - all)
- N5162A (firmware revision - all)
- N5181A (firmware revision - all)
- N5182A (firmware revision - all)
- N5183A (firmware revision - all)

Agilent ESG:
- E4428C (firmware revision - all)
- E4438C (firmware revision ≥ C.03.40)

Agilent PSG:
- E8247C (firmware revision ≥ C.03.40)
- E8257C (firmware revision ≥ C.03.40)
- E8257D (firmware revision - all)
- E8257A (firmware revision - all)
- E8267C (firmware revision ≥ C.03.40)
- E8267D (firmware revision - all)
- E82663B (firmware revision - all)
- E8663B (firmware revision - all)

CAUTION
Do not use the Erase All, Erase and Overwrite All, Erase and Sanitize All, Erase, Overwrite, or Sanitize procedures with any of these firmware revisions:

- E44x8C: C.04.84, C.04.86, C.04.95
- E82x7D: C.04.81, C.04.85, C.04.92
- E8663B: C.04.90.

If you have one of those revisions, please upgrade immediately to newer firmware as follows:

- E44x8C: upgrade to C.04.96 or later
- E82x7D: upgrade to C.04.94 or later
- E8663B: upgrade to C.04.93 or later

Manufacturing Part Number: E4400-90621
Printed in USA
February 2010
© Copyright 2004–2010 Agilent Technologies, Inc.
Using Security Functions

This document describes how to use the signal generator’s security functions to protect and remove classified proprietary information stored or displayed in the instrument.

The information in this document is presented with the assumption that you are familiar with the basic operation of the signal generator. If you are not comfortable with using the instrument’s menu structure, and functions such as setting power level and frequency, refer to the User’s Guide and familiarize yourself with basic instrument operation.

All security functions described in this section also have an equivalent SCPI command for remote operation. (Refer to the SCPI Command Reference for more information.)

Configuring the MXG ATE

NOTE For the N5161A/62A, the softkey menus and features mentioned in this guide are only available through the Web-Enabled MXG or via SCPI commands. Refer to the Installation Guide, the Programming Guide, and to the SCPI Command Reference.

The MXG ATE N5161A and N5162A, are blank front panel versions of the N5181A and N5182A.

Since the MXG ATE N5161A and N5162A, have no front panel softkeys similar to the N5181A/82A signal generators, in order to access the features mentioned in this Security Features document, two options remain available1:

1. SCPI commands (refer to the SCPI Command Reference) or
2. the instrument’s Web-Enabled page.

1The SCPI commands and Web-Enabled steps are available for the N5181A and N5182A, too.
Understanding Memory Types

The signal generator has several memory types, each used for storing a specific type of data. Before removing sensitive data, it is important to understand how each memory type is used.

- MXG Memory on page 4
- ESG/PSG Memory on page 6
- E8663B Memory on page 9

\[1\] For the N5161A/62A the softkey menus and features mentioned in this guide are only available through the Web-Enabled MXG or via SCPI commands. Refer to “Configuring the MXG ATE” on page 2, the Installation Guide, the Programming Guide, and to the SCPI Command Reference.
### MXG Memory

The following tables describe each memory type used in the base instrument and optional baseband generator.

**Table 1  Base Instrument Memory**

<table>
<thead>
<tr>
<th>Memory Type and Size</th>
<th>Writable During Normal Operation?</th>
<th>Data Retained When Powered Off?</th>
<th>Purpose/Contents</th>
<th>Data Input Method</th>
<th>Location in Instrument and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Memory (RAM) 32 MB</td>
<td>Yes</td>
<td>No</td>
<td>firmware operating memory no user data</td>
<td>operating system</td>
<td>CPU board, not battery backed.</td>
</tr>
<tr>
<td>Main Memory (Flash) 8 MB</td>
<td>Yes</td>
<td>Yes</td>
<td>factory calibration/configuration data user file system, which includes flatness calibration, instrument states, and sweep lists</td>
<td>firmware upgrades and user-saved data*</td>
<td>CPU board (same chip as firmware memory, but managed separately) Because this memory chip contains 8 MB of user data (described here) and 8 MB of firmware memory, a full-chip erase is not desirable. User data areas are selectively and completely sanitized when you perform the Erase and Sanitize function.</td>
</tr>
<tr>
<td>Firmware Memory (Flash) 8 MB</td>
<td>No</td>
<td>Yes</td>
<td>main firmware image</td>
<td>factory installed or firmware upgrade</td>
<td>CPU board (same chip as main flash memory, but managed separately) During normal operation, this memory cannot be overwritten. It is only overwritten during the firmware installation or upgrade process. Because this memory chip contains 8 MB of user data and 8 MB of firmware memory (described here), a full-chip erase is not desirable. User data areas are selectively and completely sanitized when you perform the Erase and Sanitize function.</td>
</tr>
<tr>
<td>Bootrom Memory (EEPROM) 8 kB</td>
<td>No</td>
<td>Yes</td>
<td>CPU bootup parameters no user data</td>
<td>factory programmed</td>
<td>CPU board During normal operation, this memory cannot be overwritten or erased except for LAN configuration. This read-only data is programmed at the factory.</td>
</tr>
<tr>
<td>Calibration Data (Flash) 256 kB</td>
<td>Yes</td>
<td>Yes</td>
<td>LAN configuration</td>
<td>Front panel entry or remotely</td>
<td>RF Board</td>
</tr>
<tr>
<td>LCD Display Memory (RAM) 160 kB</td>
<td>No</td>
<td>No</td>
<td>display buffer</td>
<td>operating system</td>
<td>RF board, not battery backed.</td>
</tr>
<tr>
<td>Front Panel Memory (Flash) 32 kB</td>
<td>No</td>
<td>No</td>
<td>front panel keyboard controller firmware no user data</td>
<td>operating system</td>
<td>Front Panel board</td>
</tr>
</tbody>
</table>

*Analog instruments only
<table>
<thead>
<tr>
<th>Memory Type and Size</th>
<th>Writable During Normal Operation?</th>
<th>Data Retained When Powered Off?</th>
<th>Purpose/Contents</th>
<th>Data Input Method</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waveform Memory (RAM) ≤ 320 MB</td>
<td>Yes</td>
<td>No</td>
<td>waveforms (including header and marker data)</td>
<td>normal user operation</td>
<td>Not battery backed.</td>
</tr>
<tr>
<td>Persistent Memory (Flash)* 4 GB</td>
<td>Yes</td>
<td>Yes</td>
<td>all user data</td>
<td>normal user operation</td>
<td>User data is completely sanitized when you perform the Erase and Sanitize function.</td>
</tr>
<tr>
<td>Calibration Data Memory (Flash) 128 kB</td>
<td>No</td>
<td>Yes</td>
<td>no user data</td>
<td>factory or service only</td>
<td></td>
</tr>
</tbody>
</table>

*For serial numbers <MY4818xxxx, US4818xxxx, and SG4818xxxx, the persistent memory value = 512 MB.
## ESG/PSG Memory

The following tables describe each memory type used in the base instrument, optional baseband generator, optional hard disk and option flash drive.

### Table 3  Base Instrument Memory

<table>
<thead>
<tr>
<th>Memory Type and Size</th>
<th>Writable During Normal Operation?</th>
<th>Data Retained When Powered Off?</th>
<th>Purpose/Contents</th>
<th>Data Input Method</th>
<th>Location in Instrument and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Main Memory</strong></td>
<td>Yes</td>
<td>No</td>
<td>firmware operating memory</td>
<td>operating system (not user)</td>
<td>CPU board, not battery backed.</td>
</tr>
<tr>
<td>(SDRAM) 64 MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Main Memory</strong></td>
<td>Yes</td>
<td>Yes</td>
<td>factory calibration/configuration data user file system, which includes instrument status backup, flatness calibration, IQ calibration, instrument states, waveforms (including header and marker data), modulation definitions, and sweep lists</td>
<td>firmware upgrades and user-saved data1</td>
<td>CPU board (same chip as firmware memory, but managed separately) User data is not stored in this memory if hard disk (Option 005) or flash drive (Option 009) is installed. Because this 32-MB memory chip contains 20 MB of user data (described here) and 12 MB of firmware memory, a selective chip erase is performed. User data areas are selectively and completely sanitized when you perform the Erase and Sanitize function.</td>
</tr>
<tr>
<td>(Flash) 20 MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Firmware Memory</strong></td>
<td>No</td>
<td>Yes</td>
<td>main firmware image</td>
<td>factory installed or firmware upgrade</td>
<td>CPU board (same chip as main flash memory, but managed separately) During normal operation, this memory cannot be overwritten except for LAN configuration. It is only overwritten during the firmware installation or upgrade process. Because this 32-MB memory chip contains 20 MB of user data and 12 MB of firmware memory (described here), a selective chip erase is performed. User data areas are selectively and completely sanitized when you perform the Erase and Sanitize function.</td>
</tr>
<tr>
<td>(Flash) 12 MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Battery Backed Memory</strong></td>
<td>Yes</td>
<td>Yes</td>
<td>user-editable data (table editors) last instrument state, last instrument state backup, and persistent instrument state and instrument status</td>
<td>firmware operations</td>
<td>CPU board The battery can be removed to sanitize the memory, but must be reinstalled for the instrument to operate. The battery is located on the motherboard for the ESG and on the CPU board for the PSG. Refer to your instrument’s Service Guide for removal procedure.</td>
</tr>
<tr>
<td>(SRAM) 512 kB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Bootrom Memory</strong></td>
<td>No</td>
<td>Yes</td>
<td>CPU bootup program and firmware loader/updater</td>
<td>factory programmed</td>
<td>CPU board During normal operation, this memory cannot be overwritten or erased. This read-only data is programmed at the factory.</td>
</tr>
<tr>
<td>(Flash) 128 kB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Calibration Backup Memory</strong></td>
<td>No</td>
<td>Yes</td>
<td>factory calibration/configuration data backup no user data</td>
<td>factory or service only</td>
<td>motherboard</td>
</tr>
<tr>
<td>(Flash) 512 KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Boards Memory</strong></td>
<td>No</td>
<td>Yes</td>
<td>factory calibration and information files, code images, and self-test limits no user data</td>
<td>factory or service only</td>
<td>all RF boards, baseband generator, and motherboard</td>
</tr>
<tr>
<td>(Flash) 512 Bytes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Microprocessor Cache</strong></td>
<td>Yes</td>
<td>No</td>
<td>CPU data and instruction cache memory is managed by CPU, not user</td>
<td></td>
<td>CPU board, not battery backed.</td>
</tr>
<tr>
<td>(SRAM) 3 kB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 4  Baseband Generator Memory (Options 601 and 602)

<table>
<thead>
<tr>
<th>Memory Type and Size</th>
<th>Writable During Normal Operation?</th>
<th>Data Retained When Powered Off?</th>
<th>Purpose/Contents</th>
<th>Data Input Method</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waveform Memory (SDRAM)</td>
<td>Yes</td>
<td>No</td>
<td>waveforms (including header and marker data) and PRAM</td>
<td>normal operation</td>
<td>User data is completely sanitized when you perform the Erase and Sanitize function. Not battery backed.</td>
</tr>
<tr>
<td>BBG Firmware Memory (Flash) 32 MB</td>
<td>No</td>
<td>Yes</td>
<td>firmware image for baseband generator</td>
<td>firmware upgrade</td>
<td></td>
</tr>
<tr>
<td>Coprocessor Memory (SRAM) 32 MB</td>
<td>Yes</td>
<td>No</td>
<td>operating memory of baseband coprocessor CPU</td>
<td>During normal operation, some user information, such as payload data, can remain in the memory.</td>
<td>This memory is used during normal baseband generator operation. It is not directly accessible by the user. Not battery backed.</td>
</tr>
<tr>
<td>Buffer Memory (SRAM) 5 x 512 kB</td>
<td>No</td>
<td>No</td>
<td>support buffer memory for ARB and real-time applications</td>
<td>normal user operation</td>
<td>This memory is used during normal baseband generator operation. It is not directly accessible by the user. Not battery backed.</td>
</tr>
</tbody>
</table>

### Table 5  Hard Disk Memory (E4438C Option 005, E8267D Option 005, and E8267C Option 005)

<table>
<thead>
<tr>
<th>Memory Type and Size</th>
<th>Writable During Normal Operation?</th>
<th>Data Retained When Powered Off?</th>
<th>Purpose/Contents</th>
<th>Data Input Method</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media Storage (Built-in Hard Disk) 6 GB or 10 GB (4 GB usable in both cases)</td>
<td>Yes</td>
<td>Yes</td>
<td>user files, including flatness calibrations, IQ calibration, instrument states, waveforms (including header and marker data), modulation definitions, and sweep lists</td>
<td>user-saved data</td>
<td>The magnetic residue requires several rewrite cycles or drive removal and destruction. The hard disk is an option for vector instruments (E4438C Option 005, E8267D Option 005, and E8267C Option 005) and is therefore not installed in some instruments. If it is installed, these files are stored on the hard disk instead of in flash memory. User data is completely sanitized when you perform the Erase and Sanitize function.</td>
</tr>
<tr>
<td>Buffer Memory (DRAM) 512 kB</td>
<td>No</td>
<td>No</td>
<td>buffer (cache) memory</td>
<td>normal operation through hard disk</td>
<td></td>
</tr>
<tr>
<td>Memory Type and Size</td>
<td>Writable During Normal Operation?</td>
<td>Data Retained When Powered Off?</td>
<td>Purpose/Contents</td>
<td>Data Input Method</td>
<td>Remarks</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------------</td>
<td>--------------------------------</td>
<td>---------------------------------------------------------------------------------</td>
<td>---------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Memory Storage</td>
<td>Yes</td>
<td>Yes</td>
<td>user files, including flatness calibrations, IQ calibration, instrument states, waveforms (including header and marker data), modulation definitions, and sweep lists</td>
<td>user-saved data</td>
<td>The flash drive, E8267D Option 009, replaces the hard drive, E8267D Option 005, on E8267D instruments with serial prefixes ≥ US4829/MY4829. It is, therefore, not installed in some instruments. If it is installed, these files are stored on the flash drive instead of in flash memory. User data is completely sanitized when you perform the Erase and Sanitize function.</td>
</tr>
<tr>
<td></td>
<td>8 GB (8187374080 bytes usable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffer Memory</td>
<td>No</td>
<td>No</td>
<td>buffer (cache) memory</td>
<td>normal operation</td>
<td>through flash drive</td>
</tr>
<tr>
<td></td>
<td>(DRAM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>512 kB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E8663B Memory

The following tables describe each memory type used in the base instrument.

Table 7  Base Instrument Memory

<table>
<thead>
<tr>
<th>Memory Type and Size</th>
<th>Writable During Normal Operation?</th>
<th>Data Retained When Powered Off?</th>
<th>Purpose/Contents</th>
<th>Data Input Method</th>
<th>Location in Instrument and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Memory (SDRAM)</td>
<td>Yes</td>
<td>No</td>
<td>firmware operating memory</td>
<td>operating system (not user)</td>
<td>CPU board, not battery backed.</td>
</tr>
<tr>
<td>64 MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Memory (Flash)</td>
<td>Yes</td>
<td>Yes</td>
<td>factory calibration/configuration data</td>
<td>firmware upgrades and user-saved data</td>
<td>CPU board (same chip as firmware memory, but managed separately)</td>
</tr>
<tr>
<td>20 MB</td>
<td></td>
<td></td>
<td>user file system, which includes instrument status backup, flatness calibration, IQ calibration, instrument states, waveforms (including header and marker data), modulation definitions, and sweep lists</td>
<td></td>
<td>Because this 32-MB memory chip contains 20 MB of user data (described here) and 12 MB of firmware memory, a selective chip erase is performed. User data areas are selectively and completely sanitized when you perform the Erase and Sanitize function.</td>
</tr>
<tr>
<td>Firmware Memory (Flash)</td>
<td>No</td>
<td>Yes</td>
<td>main firmware image</td>
<td>factory installed or firmware upgrade</td>
<td>CPU board (same chip as main flash memory, but managed separately)</td>
</tr>
<tr>
<td>12 MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>During normal operation, this memory cannot be overwritten except for LAN configuration. It is only overwritten during the firmware installation or upgrade process. Because this 32-MB memory chip contains 20 MB of user data and 12 MB of firmware memory (described here), a selective chip erase is performed. User data areas are selectively and completely sanitized when you perform the Erase and Sanitize function.</td>
</tr>
<tr>
<td>Battery Backed Memory (SRAM)</td>
<td>Yes</td>
<td>Yes</td>
<td>user-editable data (table editors) last instrument state, last instrument state backup, and persistent instrument state and instrument status</td>
<td>firmware operations</td>
<td>CPU board. The battery can be removed to sanitize the memory, but must be reinstalled for the instrument to operate. The battery is located on the CPU board.</td>
</tr>
<tr>
<td>512 kB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bootrom Memory (Flash)</td>
<td>No</td>
<td>Yes</td>
<td>CPU bootup program and firmware loader/updater</td>
<td>factory programmed</td>
<td>CPU board. During normal operation, this memory cannot be overwritten or erased. This read-only data is programmed at the factory.</td>
</tr>
<tr>
<td>128 kB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration Backup Memory (Flash)</td>
<td>No</td>
<td>Yes</td>
<td>factory calibration/configuration data backup</td>
<td>factory or service only</td>
<td>motherboard</td>
</tr>
<tr>
<td>512 KB</td>
<td></td>
<td></td>
<td>no user data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boards Memory (Flash)</td>
<td>No</td>
<td>Yes</td>
<td>factory calibration and information files, code images, and self-test limits</td>
<td>factory or service only</td>
<td>all RF boards, baseband generator, and motherboard</td>
</tr>
<tr>
<td>512 Bytes</td>
<td></td>
<td></td>
<td>no user data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microprocessor Cache (SRAM)</td>
<td>Yes</td>
<td>No</td>
<td>CPU data and instruction cache</td>
<td>memory is managed by CPU, not user</td>
<td>CPU board, not battery backed.</td>
</tr>
<tr>
<td>3 kB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Removing Sensitive Data from Memory

This section describes several security functions you can use to remove sensitive data stored in the signal generator when moving it from a secure development environment.

**CAUTION** The following functions do not erase or sanitize external media connected to the MXG’s USB port. You must use some other method to dispose of information on this media.

**CAUTION** Do not use the Erase All, Erase and Overwrite All, Erase and Sanitize All, Erase, Overwrite, or Sanitize procedure with any of these firmware revisions:

- E44x8C: C.04.84, C.04.86, C.04.95
- E82x7D: C.04.81, C.04.85, C.04.92
- E8663B: C.04.90

If you have one of those revisions, please upgrade immediately to newer firmware as follows:

- E44x8C: upgrade to C.04.96 or later
- E82x7D: upgrade to C.04.94 or later
- E8663B: upgrade to C.04.93 or later

**Erase All**

This function removes all user files, user flatness calibrations, user I/Q calibrations, and resets all table editors with original factory values, ensuring that user data and configurations are not accessible or viewable. The instrument appears as if it is in its original factory state, however, the memory is not sanitized. This action is relatively quick, typically taking less than one minute (the exact time depends on the number of files).

On the MXG, press: **File > More > Security > Erase All > Confirm Erase**

On the ESG/PSG/E8663B, press: **Utility > Memory Catalog > More (1 of 2) > Security > Erase All > Confirm Erase**

**NOTE** This function is different than the one that deletes all user files but does not reset the table editors:

- **MXG:** File > Delete All Files
- **ESG/PSG/E8663B:** Utility > Memory Catalog > More (1 of 2) > Delete All Files

**Erase and Overwrite All**

This function performs the same actions as Erase All, plus it clears and overwrites the various memory types in compliance with the National Industry Security Program Operating Manual (NISPOM) DOD 5220.22M.

**SRAM** *(Not applicable to the MXG)* All addressable locations are overwritten with random characters.

**CPU Flash**

All addressable locations are overwritten with random characters and then the flash blocks are erased. This accomplishes the same purpose of a chip erase, however, only the areas that are no longer in use are erased and the factory calibration files are left intact. System files are restored after erase.

**Hard Disk** *(E4438C Option 005, E8267D Option 005, and E8267C Option 005 only)* All addressable locations are overwritten with a single character. (This is insufficient for top secret data, according to the NISPOM DOD 5220.22M. For top secret data, the hard drive must be removed and destroyed.)

**Flash Drive** *(E8267D Option 009 only)* All addressable locations are overwritten with a single character. (This is insufficient for top secret data, according to the NISPOM DOD 5220.22M. For top secret data, the flash drive may be removed and destroyed.)

On the MXG, press: **File > More > Security > Erase and Overwrite All > Confirm Overwrite**

---

1For the N5161A/62A the softkey menus and features mentioned in this guide are only available through the Web-Enabled MXG or via SCPI commands. Refer to “Configuring the MXG ATE” on page 2, the Installation Guide, the Programming Guide, and to the SCPI Command Reference.
On the ESG/PSG/E8663B, press: Utility > Memory Catalog > More (1 of 2) > Security > Erase and Overwrite All > Confirm Overwrite

**Erase and Sanitize All**

This function performs the same actions as Erase and Overwrite All and then adds more overwriting actions. After executing this function, you must manually perform the additional steps described below for the sanitization to comply with the National Industry Security Program Operating Manual (NISPOM) DOD 5220.22M.

**SRAM**  
(Not applicable to the MXG) All addressable locations are overwritten with random characters.

**CPU Flash**  
Overwrites all addressable locations with random characters and then erases the flash blocks. This accomplishes the same purpose as a chip erase. System files are restored after erase.

**BBG Persistent Memory (Flash)**  
(MXG vector instruments only) Overwrites all addressable locations with random characters and then erases the flash blocks. This accomplishes the same purpose as a chip erase. System files are restored after erase.

**Hard Disk**  
(E4438C Option 005, E8267D Option 005, and E8267C Option 005 only) All addressable locations are overwritten with a single character and then a random character. (This is insufficient for top secret data, according to the NISPOM DOD 5220.22M. For top secret data, the hard drive must be removed and destroyed.)

**Flash Drive**  
(E8267D Option 009 only) All addressable locations are overwritten with a single character and then a random character. (This is insufficient for top secret data, according to the NISPOM DOD 5220.22M. For top secret data, the flash drive may be removed and destroyed.)

**Removing Persistent State Information Not Removed During Erase**

**Persistent State**

The persistent state settings contain instrument setup information that can be toggled within predefined limits such as display intensity, contrast and the GPIB address. In vector models, the user IQ Cal is also saved in this area.

The following key presses or SCPI commands can be used to clear the IQ cal file and to set the operating states that are not affected by a signal generator power-on, preset, or *RST command to their factory default:

**Instrument Setup**

- On the MXG, press: Utility > Power On/Preset > Restore System Settings to Default Values > Confirm Restore Sys Settings to Default Values
- On the ESG/PSG/E8663B front panel, press: Utility > Power On/Preset > Restore System Defaults > Confirm Restore Sys Defaults
- Or send this command to the MXG/ESG/PSG/E8663B: :SYSTem:PRESet:PERSistent

**LAN Setup**

The LAN setup (hostname, IP address, subnet mask, and default gateway) information is not defaulted with a signal generator power-on or *RST command. This information can only be changed or cleared by entering new data.

**User IQ Cal File (Vector Models Only)**

When a user-defined IQ calibration has been performed, the cal file data is removed by setting the cal file to default, as follows:

- On the front panel, press: I/Q > I/Q Calibration > Revert to Default Cal Settings
- Or send this command to the MXG: :CAL:IQ:DEF
- And send these commands to the ESG/PSG/E8663B:
  - :CAL:IQ:DEF
  - :CAL:WBIQ:DEF
Using the Secure Mode
The secure mode automatically applies the selected Security Level action the next time the instrument’s power is cycled.

Setting the Secure Mode Level
2. Choose from the following selections:
   - None – equivalent to a factory preset, no user information is lost
   - Erase – equivalent to Erase All
   - Overwrite – equivalent to Erase and Overwrite All
   - Sanitize – equivalent to Erase and Sanitize All

Activating the Secure Mode

**CAUTION** Once you activate secure mode (by pressing Confirm), you cannot deactivate or decrease the security level; the erasure actions for that security level execute at the next power cycle. Once you activate secure mode, you can only increase the security level until you cycle power. For example, you can change Erase to Overwrite, but not the reverse.

After the power cycle, the security level selection remains the same, but the secure mode is not activated.

On the ESG/PSG/E8663B, press: Utility > Memory Catalog > More (1 of 2) > Security > Enter Secure Mode > Confirm
The Enter Secure Mode softkey changes to Secure Mode Activated.
If Your Instrument is Not Functioning

If the instrument is not functioning and you are unable to use the security functions, you may physically remove the processor board and hard disk, if installed, from the instrument. Once these assemblies are removed, proceed as follows:

For removal and replacement procedures, refer to the Service Guide for your signal generator.

Table 8  Agilent Signal Generator Service Guides

<table>
<thead>
<tr>
<th>Signal Generator Model</th>
<th>Link to Service Guide</th>
</tr>
</thead>
</table>

Processor Board

Either

- Discard the processor board and send the instrument to a repair facility. A new processor board will be installed and the instrument will be repaired and calibrated. If the instrument is still under warranty, you will not be charged for the new processor board.
  or
- If you have another working instrument, install the processor board into that instrument and erase the memory. Then reinstall the processor board back into the non-working instrument and send it to a repair facility for repair and calibration. If you discover that the processor board does not function in the working instrument, discard the processor board and note that it caused the instrument failure on the repair order. If the instrument is still under warranty, you will not be charged for the new processor board.

A4 Memory Chip (MXG Vector Instruments Only)

Either

- Discard the board and send the instrument to a repair facility. A new board will be installed and the instrument will be repaired and calibrated. If the instrument is still under warranty, you will not be charged for the new board.
  or
- If you have another working instrument, install the board into that instrument and erase the memory. Then reinstall the board back into the non-working instrument and send it to a repair facility for repair and calibration. If you discover that the board does not function in the working instrument, discard the board and note that it caused the instrument failure on the repair order. If the instrument is still under warranty, you will not be charged for the new board.

Hard Disk (E4438C Option 005, E8267D Option 005, and E8267C Option 005 only)

Either

- Discard the hard disk and send the instrument to a repair facility. Indicate on the repair order that the hard disk was removed and must be replaced. A new hard disk will be installed and the instrument will be repaired and calibrated. If the instrument is still under warranty, you will not be charged for the new hard disk.
  or
- Keep the hard disk and send the instrument to a repair facility. When the instrument is returned, reinstall the hard disk.
Using the Secure Display¹

NOTE Front panel control of this feature is not available on PSG E82x7C signal generators with firmware revisions earlier than C.03.76. The feature can be activated remotely, however, using SCPI commands. Refer to the “System Commands” chapter of the SCPI Command Reference for more information.

This function prevents unauthorized personnel from reading the instrument display and tampering with the current configuration through the front panel. The display blanks, except for the *** SECURITY DISPLAY ACTIVATED *** message, and the front panel keys are disabled. Once this function is activated, the power must be cycled to re-enable the display and front panel keys.

To apply this function:
On the ESG/PSG/E8663B: Utility > Display > More (1 of 2) > Activate Secure Display > Confirm Secure Display

¹For the N5161A/62A the softkey menus and features mentioned in this guide are only available through the Web-Enabled MXG or via SCPI commands. Refer to “Configuring the MXG ATE” on page 2, the Installation Guide, the Programming Guide, and to the SCPI Command Reference.
Security Feature Issues for Some Signal Generator Firmware Revisions

If you have one of the affected firmware revisions installed (see Table 9) on your signal generator, using certain security features may cause the deletion of some of the signal generator’s system files. Before using the security features, update your firmware to the appropriate revision listed in Table 9.

Table 9  Firmware Revisions by Signal Generator Model

<table>
<thead>
<tr>
<th>Signal Generator Model</th>
<th>Affected Firmware Revisions</th>
<th>Update To</th>
</tr>
</thead>
<tbody>
<tr>
<td>E4428C</td>
<td>C.04.84, C.04.86, or C.04.95</td>
<td>C.04.96 or later</td>
</tr>
<tr>
<td>E4438C</td>
<td>C.04.84, C.04.86, or C.04.95</td>
<td>C.04.96 or later</td>
</tr>
<tr>
<td>E8257D</td>
<td>C.04.81, C.04.85, or C.04.92</td>
<td>C.04.94 or later</td>
</tr>
<tr>
<td>E8267D</td>
<td>C.04.81, C.04.85, or C.04.92</td>
<td>C.04.94 or later</td>
</tr>
<tr>
<td>E8663B</td>
<td>C.04.90</td>
<td>C.04.93 or later</td>
</tr>
</tbody>
</table>

To obtain the latest firmware online, perform the following steps:

2. Under the Technical Support Tab, select Drivers and Software, and follow the remaining links to the firmware upgrade page.

If web access is not available, Agilent can provide the new firmware on CD-ROM. To obtain the CD-ROM, contact Agilent or your Agilent representative.

Error Messages and Secure Environments

If you cannot upgrade the firmware prior to using the security features, Agilent will help you to recover from error messages which may appear after executing the security functions. The error messages indicate that instrument system files have been erased. The following list shows some of the possible error messages:

- 256, File name not found; /SYS/LICENSE.TXT
- 617, Configuration Error; License file not found. Creating empty one.
- A missing or damaged system file was encountered while trying to diagnose the system.

Even though these errors may occur, the security function has completely sanitized the signal generator. If the signal generator is located in a secure environment, it is safe to remove it. After removing it from the secure area, follow the process below to recover the lost system files.

Recovering Erased System Files

To recover the lost files, perform the following steps:

1. Obtain your signal generator’s model and serial number.
2. Contact Agilent and request a replacement license file.
   The Agilent representative will ask for the model and serial number.
3. Update the firmware to the proper revision shown in Table 9.
   a. If problems occur when upgrading the firmware, manually enter as many license keys as possible using Utilities > Instrument Info > Options Info > Auxiliary Software Options
   b. Upgrade the firmware again.

---

1For the N5161A/62A, the softkey menus and features mentioned in this guide are only available through the Web-Enabled MXG or via SCPI commands. Refer to “Configuring the MXG ATE” on page 2, the Installation Guide, the Programming Guide, and to the SCPI Command Reference.
4. Open Internet Explorer and enter http://<instrument IP address>/update.
5. Locate Recover Self-test System Files and click Execute.
6. Locate Overwrite LICENSE.TXT, cut and past your replacement license file (obtained in Step 2) into the text box, and click Execute.
7. Cycle the power on the signal generator.
8. If configuration errors persist after completing the previous steps, contact Agilent.